Abstract:
Embodiments of the present disclosure are directed to a wearable phototherapy eye device. In an example, phototherapy can be controlled by varying an emission property of light emitted from the wearable phototherapy eye device to a user eye. In particular, the wearable phototherapy eye device includes a light source oriented to emit the light towards the user eye. The wearable phototherapy eye device also includes controls, such as electrical, mechanical, and/or electro-mechanical controls, to vary the emission property of the light based on an emission target associated with a sleep phase.
Abstract:
The present invention provides a method for diagnosing cancer, predicting a disease outcome or response to therapy in a patient sample. The method involves isolating a circulating tumor cell (CTC), for example, a viable CTC, from a sample using a parylene microfilter device comprising a membrane filter having or consisting of a parylene substrate, which has an array of holes with a predetermined shape and size; and detecting and quantifying telomerase activity in blood circulating tumor cells. The invention further provides methods of using cells live-captured in various applications.
Abstract:
A three-coil electromagnetic induction power transfer system is disclosed for epiretinal prostheses and other implants. A third, buffer coil is disposed between an external transmitting coil and a receiver coil buried within the body to improve efficiency and robustness to misalignments. One or more of the coils can be manufactured using micromechanical machining techniques to lay out conductors in a ribbon of biocompatible insulator, folding lengths of the insulated conductor traces longitudinally over one another, and then spiraling them into a ring. The traces change axial position in the ring by shifting across fold lines. One or more U-shaped sections on the traces can be folded so that adjacent traces can project opposite one another, lengthening the resulting ribbon that can be wound into a coil.
Abstract:
A contact lens fluid delivery device having a liquid reservoir connected to a channel with a flow regulator is described. Other eye hydration and variable dioptric power contact lenses are described herein. Also described are implantable liquid delivery apparatuses having a liquid storage reservoir connected to a channel with a flow regulator. These devices and apparatuses are useful for specific, targeted delivery of therapeutic liquids within a subject. In some embodiments, the devices incorporate actuation chambers which provide a driving force releasing the fluid into the targeted area e.g., the eye. The actuation chambers described herein can contain phase change materials or osmotic chambers or a combination thereof to drive the release of fluid.
Abstract:
A miniature, low power electronic pressure sensor with a first, oil-filled chamber to protect its microelectromechanical systems (MEMS) pressure sensitive membrane and a second chamber filled with saline or body fluids connected by tube into an organ in the body, such as an eyeball, that needs pressure sensing, is described. The tube carries pressure from a sensitive area within the organ to the electronic pressure sensor. The pressure sensor may communicate wirelessly with external readers and pass data to a server or other computer. Running alongside the tube is another tube for draining and pressure relief. The tubes, or cannulas, can share an opening into the organ in order to minimize the number of holes needed. The tubes may be molded into a single oval cross section, combined coaxially, or share a lumen for a portion that enters the wall of an organ so as to promote healing.
Abstract:
An implantable medical device, a method of manufacturing, and a method of use are described. The implantable medical device includes an absorption bag connected by a cannula to a discharge bag. The implantable medical device also includes a reservoir external to the discharge bag and attached to a surface of the discharge bag. At least a portion of the absorption bag and at least a portion of a bottom surface of the reservoir are permeable to a predefined class of small molecules, such as molecular oxygen. The reservoir can retain live cells that rely on the small molecules for survival and growth. Based on concentration of the small molecules, the small molecules permeate into the absorption bag and are transported to the discharge bag for permeation into the reservoir, thereby providing a supply of the small molecules to the live cells.
Abstract:
Embodiments of the present disclosure are directed to a phototherapy eye device. In an example, the phototherapy eye device includes a number of radioluminescent light sources and an anchor. Each radioluminescent light source includes an interior chamber coated with phosphor material, such as zinc sulfide, and containing a radioisotope material, such as gaseous tritium. The volume, shape, phosphor material, and radioisotope material are selected for emission of light at a particular wavelength and delivering a particular irradiance on the retina (when implanted in an eyeball). The wavelength is in the range of 400 to 600 nm and the irradiance is substantially 109 to 1011 photons per second per cm2.
Abstract:
A composition of matter is described in which a porous material, such as polydimethylsiloxane (PDMS), is coated with parylene N, C, D, or AF-4 by vapor deposition polymerization while a temperature of the porous material's surface being coated is heated to between 60° C. and 120° C., or 80° C. and 85° C., during deposition. The parylene forms nano roots within the porous material that connect with a conformal surface coating of parylene. In some embodiments, a watertight separation chamber in an integrated microfluidic liquid chromatography device is fabricated by heating tunnels in micro-fabricated PDMS and depositing parylene within the heated tunnels.
Abstract:
Thin parylene C membranes having smooth front sides and ultrathin regions (e.g., 0.01 μm to 5 μm thick) interspersed with thicker regions are disclosed. The back sides of the membranes can be rough compared with the smooth front sides. The membranes can be used in vitro to grow monolayers of cells in a laboratory or in vivo as surgically implantable growth layers, such as to replace the Bruch's membrane in the eye. The thin regions of parylene are semipermeable to allow for proteins in serum to pass through, and the thick regions give mechanical support for handling by a surgeon. The smooth front side allows for monolayer cell growth, and the rough back side helps prevents cells from attaching there.
Abstract:
Neurostimulator devices and methods of using these devices are described. The neurostimulator devices can include a stimulation assembly connectable to a plurality of electrodes; one or more sensors; and at least one processor configured to modify at least one complex stimulation pattern.