Abstract:
The present invention provides modified droplet actuator systems, software, and software-executed methods for use in droplet actuator operation and droplet actuator systems that are configured and programmed to execute such software. The invention provides a computer readable medium storing processor executable code for performing a method, the method comprising receiving a selection of a function to be performed by a droplet actuator, associating the function to a predefined electrode element, associating the predefined electrode element to a grouping of one or more electrodes that perform the function, and adding the grouping of one or more electrodes to an electronic layout of the droplet actuator.
Abstract:
Molecular adsorption to the microfluidic device surfaces can be passively and actively mitigated by mixing certain hydrophilic polymers (organic polymers with repeating hydrophilic groups—the preferred polymers being amphipathic surfactants—with the sample liquid during or prior to relevant microfluidic operations. Nonionic surfactants such as polyoxyethylene sorbitan monooleate and polyoxyethylene octyl phenyl ether are especially effective. High molecular weight polyethylene polymers are also effective. The hydrophilic polymers appear to prevent binding of the fouling molecules to the microfluidic by occupying the surface sites in place of the fouling molecules or by interacting with the fouling molecules to prevent binding of the fouling molecules the surface. When surface adsorption is thus mitigated, microfluidic devices can readily handle samples containing biomolecules to enable active sample concentration, filtering, washing, transport, mixing and other sample handling operations.
Abstract:
A microfluidic device having a substrate with an electrically conductive element made using a conductive ink layer underlying a hydrophobic layer.
Abstract:
A series of microactuators for manipulating small quantities of liquids, and methods of using these for manipulating liquids, are disclosed. The microactuators are based on the phenomenon of electrowetting and contain no moving parts. The force acting on the liquid is a potential-dependent gradient of adhesion energy between the liquid and a solid insulating surface.
Abstract:
A series of microactuators for manipulating small quantities of liquids, and methods of using these for manipulating liquids, are disclosed. The microactuators are based on the phenomenon of electrowetting and contain no moving parts. The force acting on the liquid is a potential-dependent gradient of adhesion energy between the liquid and a solid insulating surface.
Abstract:
Methods of improving microfluidic assays are disclosed. Assays can be improved (better signal to noise ratio) by using sessile drop evaporation as an analyte concentration step (enhanced signal) and repeated passes of wash droplets as a means to reduce non-specific binding (noise reduction). In addition multiple massively parallel analyses improve the statistical precision of the analyses.
Abstract:
The invention provides a method of dispersing or circulating magnetically responsive beads within a droplet in a droplet actuator. The invention, in one embodiment, makes use of a droplet actuator with a plurality of droplet operations electrodes configured to transport the droplet, and a magnetic field present at a portion of the plurality of droplet operations electrodes. A bead-containing droplet is provided on the droplet actuator in the presence of the uniform magnetic field. Beads are circulated in the droplet during incubation by conducting droplet operations on the droplet within a uniform region of the magnetic field. Other embodiments are also provided.
Abstract:
A droplet actuator comprising a substrate comprising an electrode coupled to a voltage source, wherein the droplet actuator is configured such that when voltage is applied to the electrode, an electrostatic energy gradient is established at a surface of the substrate which causes a droplet to be transported in a direction established by the energy gradient. Related methods and other embodiments are also provided.
Abstract:
The invention provides a droplet actuator drive. In certain embodiments, the droplet actuator drive may include a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and/or a means for coupling the droplet actuator circuitry to a processor. Systems, kits and methods of conducting assays are also provided.
Abstract:
An aerosol sample collector with an air flow path comprising: (i) at a first segment thereof, a particle charging device, and (i) at a second segment thereof, deflection plates configured to focus particles of a desired charge into a preselected cross-section of the air flow path. The air flow path also includes charged substrates arranged at an outflow portion of the air flow path to collect charged particles on a collection surface of the charged substrates; and an exit path for flowing particles not in the preselected cross-section of the air flow path away from the charged substrates. Related methods are also provided.