Abstract:
The present invention relates to MgCl2.mROH.nH2O adducts, where R is a C1-C10 alkyl, 2nullmnull4.2, 0nullnnull0.7 , characterized by an X-ray diffraction spectrum in which, in the range of 2null diffraction angles between 5null and 15null, the three main diffraction lines are present at diffraction angles 2null of 8.8null0.2null, 9.4null0.2null and 9.8null0.2null, the most intense diffraction lines being the one at 2nullnull8.8null0.2null, the intensity of the other two diffraction lines being at least 0.2 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and stereospecificity with respect to the catalysts prepared from the adducts of the prior art.
Abstract translation:本发明涉及MgCl 2·mROH·nH 2 O加合物,其中R是C 1 -C 10烷基,2 <= m <= 4.2,0 <= n <0.7,其特征在于X射线衍射光谱,其中在 2θ衍射角在5°和15°之间的范围内,三条主要的衍射线分别以8.8±0.2°,9.4±0.2°和9.8±0.2°的衍射角2θ处存在,最强的衍射线为2θ= 8.8±0.2°,其他两条衍射线的强度为最强衍射线强度的至少0.2倍。 从本发明的加合物获得的催化剂组分能够产生用于烯烃聚合的催化剂,其特征在于相对于由现有技术的加合物制备的催化剂具有增强的活性和立体定向性。
Abstract:
Supported phase catalysts in which the support phase is highly polar, most preferably ethylene glycol or glycerol, are disclosed. An organometallic compound, preferably a metal complex of chiral sulfonated 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl is dissolved in the support phase. Such supported phase catalysts are useful for asymmetric synthesis of optically active compounds, including the asymmetric hydrogenation of prochiral unsaturated carbon-hetero atom bonds, such as ketones, imines and beta-keto esters.
Abstract:
A texaphyrin having substituents containing ethoxy groups, methods for using texaphyrins in photodynamic therapy, and cleavage of a polymer of deoxyribonucleic acid are disclosed. The in vivo treatment of tumors and atheroma is demonstrated using Lu(III)texaphyrin complexes. A preferred method of use is the site-specific cleavage of a polymer of deoxyribonucleic acid and a preferred texaphyrin is a derivatized texaphyrin having binding specificity, in particular, a texaphyrin covalently coupled to a site-directing molecule, preferably an oligonucleotide.
Abstract:
Disclosed is a method of preparing a catalyst for hydrogenation of a hydrocarbon oil, in which a hydroxycarboxylic acid is added to a catalyst carrying a metal of the Group VI of the Periodic Table and a metal of the Group VIII of the same, optionally along with phosphoric acid, on a carrier, in an amount of from 0.3 to 5 molar times of the total metal molar number of the metal of the Group VI and the metal of Group VIII, and thereafter the resulting catalyst is dried at a temperature not higher than 200.degree. C. The catalyst has a high catalyst activity and is used for hydrogenation of a hydrocarbon oil, especially satisfying the requirement of reducing the sulfur content in a light oil.
Abstract:
A method of preparing a catalyst for hydrogenation of a hydrocarbon oil, wherein an aqueous solution containing a metal of Group VI of the Periodic Table and a metal of Group VIII of the same, along with a hydroxycarboxylic acid and optionally phosphoric acid is added to a carrier substance consisting essentially of at least one of an inorganic oxide and an inorganic hydrate, and the resulting blend is kneaded, shaped and thereafter dried at a temperature not higher than 200.degree. C. The catalyst has a high catalyst activity and is used for hydrogenation of a hydrocarbon oil, especially satisfying the requirement of reducing the sulfur content in a light oil.
Abstract:
The invention concerns a catalytic composition resulting from placing at least one divalent nickel compound into contact with at least one hydrocarbylaluminum halide and at least one epoxy compound, in any order. It also concerns the use of the catalytic composition in a process of oligomerizing monoolefins.
Abstract:
A method for recovering a transition metal, e.g., rhodium, from a non-polar organic solution containing non-polar organic solvent-soluble and polar solvent-insoluble coordination complex of the transition metal and a non-polar organic solvent-soluble and polar solvent-insoluble ligand, e.g., an organophosphorus ligand, by contacting the non-polar organic solution with a polar solution of an ionic organophosphine ligand, the transition metal then can be transferred back into a non-polar solution for reuse. In one embodiment rhodium is rendered amenable for back-extraction by treating the polar solution with a suitable conditioning reagent.
Abstract:
A process for improving the catalytic activity of a partially deactivated solubilized rhodium - tertiary organophosphine complex hydroformylation catalyst.
Abstract:
In this process for recovering noble metals of group VIII from a contaminated catalyst solution originating from the carbonylation of methyl acetate and/or dimethylether (the catalyst solution containing carbonyl complexes of these noble metals, organic or inorganic promoters, undistillable organic contaminants as well as volatiles) the volatiles are distillatively removed from the catalyst solution and the remaining distillation residue is water-treated, whereby the noble metal/carbonyl-complex is precipitated together with the organic contaminants and is separated from the aqueous phase, while the promotor is dissolved and recovered in conventional manner. The noble metals are then set free in elemental form by subjecting the noble metal/carbonyl-complex separated and contaminated with organic polymers at temperatures of 150.degree. to 300.degree. C. to treatment with an ethyleneglycoldialkylether solvent of the formula R(--OCH.sub.2 --CH.sub.2).sub.n --OR, in which n stands for a number of from 1 to 4 and R stands for identical or different alkyl groups having from 1 to 6 carbon atoms. The noble metal can then be recovered by filtration, and the solvent can be freed of organic contaminants by distillation.