Abstract:
A gas-generating apparatus (10) includes a reaction chamber (18) containing a solid fuel component (24) and a liquid fuel component (22) that is introduced into the reaction chamber by a fluid path, such as a tube, nozzle, or valve. The flow of the liquid fuel to the solid fuel is self-regulated. Other embodiments of the gas-generating apparatus are also disclosed.
Abstract:
Process for the preparation of ethylene homopolymers or copolymers in a high pressure reactor with at least two spatially separated initiator injection points by polymerizing ethylene and optionally further monomers in the presence of at least two different mixtures of free-radical polymerization initiators at from 100° C. to 350° C. and pressures in the range of from 160 MPa to 350 MPa, wherein the process comprises the following steps: a) providing at least two different initiators as solution in a suitable solvent or in liquid state, b) mixing the initiators and optionally additional solvent in at least two static mixers and c) feeding each of the mixtures to a different initiator injection point of the high pressure reactor, and apparatus for feeding initiator mixtures to a high pressure reactor with at least two spatially separated initiator injection points.
Abstract:
A gas-generating apparatus includes a reaction chamber having a first reactant, a reservoir having an optional second reactant, and a self-regulated flow control device. The self-regulated flow control device stops the flow of reactant from the reservoir to the reaction chamber when the pressure of the reaction chamber reaches a predetermined level. Methods of operating the gas-generated apparatus and the self-regulated flow control device, including the cycling of a shut-off valve of the gas-generated apparatus and the cycling of the self-regulated flow control device are also described.
Abstract:
Equipment and a process for upgrading oil are provided to produce a refined oil lighter than a material oil by cracking the heavier material oil with the addition of hydrogen under relatively relaxed production conditions. An equipment for upgrading oil according to one aspect of the invention includes an emulsion making portion (10), a refinery tank portion (20), and a heating portion (30), and configured to make an emulsion (E) by emulsifying ionized alkaline water (A) in a material oil (O1) in the emulsion making portion (10), and to drop droplets (D) of the emulsion (E) onto the surface (S) of a heat medium (O2) in the refinery tank portion (20) heated by the heating portion (30).
Abstract:
A gas-generating apparatus (10) includes a reaction chamber (18) containing a solid fuel component (24) and a liquid fuel component (22) that is introduced into the reaction chamber by a fluid path, such as a tube, nozzle, or valve. The flow of the liquid fuel to the solid fuel is self-regulated. Other embodiments of the gas-generating apparatus are also disclosed.
Abstract:
An apparatus and method for in situ gas-phase formation and deflagration of nitrocellulose. A nitrating agent such as nitric acid and cellulose are delivered separately to a reaction chamber, where a brief heating pulse initiates nitration of the cellulose and deflagration of the nitrocellulose thus produced. Discharge of the high-pressure gases produced by the deflagration from the reaction chamber can then be used to drive an actuator, turbine, etc.
Abstract:
An apparatus for fuel reforming is provided that utilizes pulsed injectors for a fuel flow controller and an air flow controller, and the injectors are integrated with an atomizing mixer thereby producing a fuel-air mixture having an O/C Ratio which, in turn, is passed to a Catalytic Partial Oxidation reactor. Use of this apparatus permits beneficial long term operation of this Catalytic Partial Oxidation reactor.
Abstract:
Microarrays of polypeptides on a solid support are provided. The microarray compositions find use in the multiplexed detection and quantitation of ligands, e.g. antigens or antibodies, in a miniaturized format. The substrate is used for detecting binding of ligands to a plurality of polypeptides for screening and diagnostic purposes.
Abstract:
A gas-generating apparatus includes a reaction chamber having a first reactant, a reservoir having an optional second reactant, and a self-regulated flow control device. The self-regulated flow control device stops the flow of reactant from the reservoir to the reaction chamber when the pressure of the reaction chamber reaches a predetermined level. Methods of operating the gas-generated apparatus and the self-regulated flow control device, including the cycling of a shut-off valve of the gas-generated apparatus and the cycling of the self-regulated flow control device are also described.