Abstract:
Methods and apparatuses provide surveillance of a convoy. At least one unmanned aerial vehicle (UAV) obtains images around the convoy's position to provide information about potential hostile activity while the UAV follows a generally curvilinear path around the convoy as instructed by one of the convoy vehicles. Path planner algorithm software is executed by the controlling convoy vehicle in which position and velocity information regarding the unmanned aerial vehicle and the convoy are processed to determine values of control variables. The determined values are sent to the unmanned aerial vehicle over a wireless communications channel. The path of the surveillance vehicle may be changed in order to provide evasive measures to avoid an attack on the surveillance vehicle by an adversary.
Abstract:
A system for controlling flight of an aircraft has sensors (37, 43), a receiver (45), and a digital control system (57), all of which are carried aboard the aircraft. The sensors (37, 43) determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver (45) receives transmitted data (51, 55) communicating the position and movement of a reference vehicle relative to the earth. The control system (57) calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors (37, 43) and the receiver (45) and then commands flight control devices (33) on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.
Abstract:
Methods and apparatuses for launching, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
Methods and apparatuses for launching and capturing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to retrieve the aircraft in flight. The aircraft can then be retrieved from the recovery line. The boom can be retracted when not in use to reduce the volume it occupies.
Abstract:
Methods and apparatuses for launching, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
Methods and apparatuses for capturing and recovering unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be captured at an extendable boom. The boom can be extended to deploy a recovery line to retrieve the aircraft in flight. The boom can be retracted when not in use to reduce the volume it occupies. A tension device coupled to the recovery line can absorb forces associated with the impact of the aircraft and the recovery line.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
A vehicle refueling system includes an aero vehicle and a fuel bladder system. The fuel bladder system includes a fuel bladder, a pickup loop of a predetermined loop size, a reel mechanism to retract at least one side of the pickup loop to reduce the loop size, a snag sensor to sense when the pickup loop has been hooked by the retractable hook, the snag sensor initiating the reel mechanism, a compass to sense the random orientation of the loop, a radio navigation receiver to sense a location of the loop, and a transmitter to transmit the random orientation and the location. The vehicle includes a fuselage, a retractable hook with a hook sensor to detect when a fuel bladder is hooked and the loop size has been reduced by the reel mechanism, a fuel bladder stowage chamber within the fuselage, a fuel intake tube capable of drawing fuel from the fuel bladder stowed in the stowage chamber, a retraction mechanism to retract the retractable hook, a fuel transfer mechanism to transfer fuel from the fuel bladder into an internal fuel tank, and a fuel bladder discard mechanism to discard the fuel bladder after the fuel has been drawn from the fuel bladder.
Abstract:
Various measures (for example methods, UAVs, controllers and computer programs) are provided in relation to controlling a UAV. The UAV is caused to provide energy to and receive energy from a given vehicle. The received energy is used to provide power to at least one component of the UAV.
Abstract:
Systems, devices, and methods for impacting, by a small unmanned aerial vehicle (SUAV), a net having at least three sides; and converting the kinetic energy of the SUAV into at least one of: elastic potential energy of one or more tensioned elastic cords connected to at least one corner of the net, gravitational potential energy of a frame member connected to at least one corner of the net, rotational kinetic energy of the frame member connected to at least one corner of the net, and elastic potential energy of the frame member connected to at least one corner of the net.