Abstract:
A silicon-on-insulator (SOI) substrate is anodically bonded to a glass substrate in a MEMS structure with or without electrically bypassing the insulator layer by electrically comprising the silicon layers. The insulator layer serves as an etch stop to create a well-defined, thin silicon membrane for a sensor. A second glass substrate is anodically bonded to the other side of the SOI substrate, and debonding of the existing anodic bond prevented by eliminating any potential drop across the existing bonded surface.
Abstract:
Novel micro electro mechanical systems (MEMS)-based sensors for use in ultra-high temperature environments are disclosed. The MEMS-based sensors are derived from a class of polymer-derived ceramics selected from the group consisting of SiCN, SiBCN and SiAlCN. The materials of construction are such that, the sensors are capable of accurate, real-time, on-line and in-situ monitoring, suppression of combustion oscillations and detailed measurements in operating structures that have temperatures of from about 1500° K to about 2000° K, extreme pressures/turbulence and harsh chemical off gases. When the novel sensors are mounted on a hot gas path wall, such as, at a combustor exit, there can be a continuous monitoring of pressure pulses/oscillations, wall shear stress, temperature and surface heat flux.
Abstract:
A method for manufacturing a semiconductor physical quantity sensor is provided. The sensor includes a multi-layered substrate, a cavity, a groove, a movable portion and a fixed portion. The multi-layered substrate includes a support substrate, an embedded insulation film, and a semiconductor layer. The method includes the steps of: preparing the multi-layered substrate having a sacrifice layer embedded in the semiconductor layer so that the sacrifice layer is disposed at a cavity-to-be-formed portion; forming the groove from the semiconductor layer to reach the sacrifice layer; and selectively etching the sacrifice layer from a bottom of the groove to form a cavity.
Abstract:
A physical quantity sensor includes: a semiconductor substrate; a cavity disposed in the substrate and extending in a horizontal direction of the substrate; a groove disposed on the substrate and reaching the cavity; a movable portion separated by the cavity and the groove so that the movable portion is movably supported on the substrate; and an insulation layer disposed on a bottom of the movable portion so that the insulation layer provides a roof of the cavity.
Abstract:
A heat-sensitive apparatus includes a substrate with a top surface, one or more bars being rotatably joined to the surface and having bimorph portions, and a plate rotatably joined to the surface and substantially rigidly joined to the one or more bars. Each bimorph portion bends in response to being heated. The one or more bars and the plate are configured to cause the plate to move farther away from the top surface in response to the one or more bimorph portions being heated.
Abstract:
A method of making a micro electromechanical switch or tunneling sensor. A cantilevered beam structure and a mating structure are defined on a first substrate or wafer; and at least one contact structure and a mating structure are defined on a second substrate or wafer, the mating structure on the second substrate or wafer being of a complementary shape to the mating structure on the first substrate or wafer. A bonding layer, preferably a eutectic bonding layer, is provided on at least one of the mating structures. The mating structure of the first substrate is moved into a confronting relationship with the mating structure of the second substrate or wafer. Pressure is applied between the two substrates so as to cause a bond to occur between the two mating structures at the bonding or eutectic layer. Then the first substrate or wafer is removed to free the cantilevered beam structure for movement relative to the second substrate or wafer.
Abstract:
A method is provided for making a MEMS structure (69). In accordance with the method, a CMOS substrate (51) is provided which has interconnect metal (53) deposited thereon. A MEMS structure is created on the substrate through the plasma assisted chemical vapor deposition (PACVD) of a material selected from the group consisting of silicon and silicon-germanium alloys. The low deposition temperatures attendant to the use of PACVD allow these materials to be used for MEMS fabrication at the back end of an integrated CMOS process.
Abstract:
A ceramic substrate 1 comprises a thin diaphragm portion 3 and a thick portion 2. A lower electrode 4 is formed on the ceramic substrate and is spaced apart from an auxiliary electrode 8, also formed on the ceramic substrate. A bonding layer 7C comprises an insulator and is formed on the ceramic substrate between the lower and auxiliary electrodes. A piezoelectric/electrostrictive layer 5 is formed on at least a portion of each of the lower electrode, the auxiliary electrode and the bonding layer. An upper electrode 6 extends over the piezoelectric/electrostrictive layer and contacts the auxiliary electrode. A bonded portion exists wherein the bonding layer serves to completely bond together the substrate and the piezoelectric/electrostrictive film layer.
Abstract:
A microelectronics deformation sensor including at least one stress sensor directly integrated on at least one of an extremity of a supported deformable structure and a support of the deformable structure, the deformable structure being constructed of a single crystal material, the at least one stress sensor sensing a stress in a vicinity of the extremity and thereby sensing a deformation of the deformable structure.
Abstract:
Low temperature wafer bonding process enhancement makes a wafer surface hydrophobic, preparing it with a buffered oxide etchant and then exposing it to H.sub.2 O.sub.2 before thermoelectric bonding. Has particular application to diaphragm-based pressure sensor construction.
Abstract translation:低温晶片接合工艺增强使晶片表面疏水,用缓冲氧化物蚀刻剂制备,然后在热电接合之前将其暴露于H 2 O 2。 特别适用于膜片式压力传感器的施工。