Wet etch processing
    92.
    发明申请
    Wet etch processing 失效
    湿式蚀刻处理

    公开(公告)号:US20070134829A1

    公开(公告)日:2007-06-14

    申请号:US11637020

    申请日:2006-12-12

    Abstract: A method of wet etching produces high-precision microneedle arrays for use in medical applications. The method achieves precise process control over microneedle fabrication, at single wafer or batch-level, using wet etching of silicon with potassium hydroxide (KOH) solution by accurately identifying the etch time endpoint. Hence, microneedles of an exactly required height, shape, sharpness and surface quality are achieved. The outcome is a reliable, reproducible, robust and relatively inexpensive microneedle fabrication process. Microneedles formed by KOH wet etching have extremely smooth surfaces and exhibit superior mechanical and structural robustness to their dry etched counterparts. These properties afford extra reliability to such silicon microneedles, making them ideal for medical applications. The needles can also be hollowed. Wet etched silicon microneedles can then be employed as masters to replicate the improved surface and structural properties in other materials (such as polymers) by moulding.

    Abstract translation: 湿蚀刻的方法产生用于医疗应用的高精度微针阵列。 该方法通过精确地识别蚀刻时间终点,通过使用氢氧化钾(KOH)溶液对硅进行湿蚀刻,在单晶片或批次水平上实现了微针制造的精确过程控制。 因此,实现了精确要求的高度,形状,锐度和表面质量的微针。 结果是可靠,可重现,稳健且相对便宜的微针制作工艺。 通过KOH湿蚀刻形成的微针具有非常光滑的表面,并且对其干蚀刻的对应物表现出优异的机械和结构坚固性。 这些性能为这种硅微针提供了额外的可靠性,使其成为医疗应用的理想选择。 针也可以是中空的。 湿法蚀刻的硅微针可用作主机,通过模制复制其他材料(如聚合物)中改进的表面和结构性能。

    Method of fabricating a biosensor
    93.
    发明申请
    Method of fabricating a biosensor 失效
    制造生物传感器的方法

    公开(公告)号:US20070117243A1

    公开(公告)日:2007-05-24

    申请号:US11286065

    申请日:2005-11-22

    Applicant: Manish Sharma

    Inventor: Manish Sharma

    Abstract: The present invention provides a method of fabricating a biosensor. The method includes providing a substrate which has a surface coating. The surface coating is deformable and the substrate includes a layered structure which has at least two electrically conductive layers separated by at least one electrically insulating layer. The method also includes imprinting a structure into the surface coating. Further, the method includes etching at least a region of the imprinted structure and the substrate to remove at least a portion of the structure and the substrate. The structure is shaped so that the etching forms at least a portion of the biosensor in the substrate and exposes at least a portion of each electrically conductive layer to form electrodes of the biosensor.

    Abstract translation: 本发明提供一种制造生物传感器的方法。 该方法包括提供具有表面涂层的基底。 表面涂层是可变形的,并且衬底包括具有由至少一个电绝缘层分开的至少两个导电层的分层结构。 该方法还包括将结构压印到表面涂层中。 此外,所述方法包括蚀刻所述压印结构的至少一个区域和所述基板以去除所述结构和所述基板的至少一部分。 该结构被成形为使得蚀刻形成衬底中的生物传感器的至少一部分并且暴露出每个导电层的至少一部分以形成生物传感器的电极。

    Method for fabricating microstructure and microstructure
    94.
    发明申请
    Method for fabricating microstructure and microstructure 有权
    微结构和微结构的制作方法

    公开(公告)号:US20060057761A1

    公开(公告)日:2006-03-16

    申请号:US11256959

    申请日:2005-10-25

    Abstract: A method of making a microstructure with thin wall portions (T1-T3) includes a step of performing a first etching process to a material substrate having a laminate structure including a first conductive layer (11) and a second conductive layer (12) having a thickness of the thin wall portions (T1-T3), where the etching is performed from the side of the first conductive layer (11) thereby forming in the second conductive layer (12) pre thin wall portions (T1′-T3′) which has a pair of side surfaces apart from each other in an in-plane direction of the second conductive layer (12) and contact the first conductive layer (11). The method also includes a step of performing a second etching process from the side of the first conductive layer (11) for removing part of the first conductive layer (11) contacting the pre thin wall portions (T1′-T3′) to form the thin wall portions.

    Abstract translation: 制造具有薄壁部分(T 1 -T 3)的微结构的方法包括对具有包括第一导电层(11)和第二导电层(12)的层压结构的材料基板进行第一蚀刻工艺的步骤, 具有薄壁部分(T 1 -T 3)的厚度,其中从第一导电层(11)的侧面进行蚀刻,从而在第二导电层(12)中形成预薄壁部分(T 1' -T 3'),其在第二导电层(12)的面内方向上具有彼此分离的一对侧表面,并与第一导电层(11)接触。 该方法还包括从第一导电层(11)侧进行第二蚀刻处理以去除与预薄壁部分(T 1'-T 3')接触的第一导电层(11)的一部分的步骤 形成薄壁部分。

    Surfactant-enhanced protection of micromechanical components from galvanic degradation
    97.
    发明申请
    Surfactant-enhanced protection of micromechanical components from galvanic degradation 有权
    表面活性剂增强了微机械部件对电流退化的保护

    公开(公告)号:US20040065637A1

    公开(公告)日:2004-04-08

    申请号:US10242213

    申请日:2002-09-12

    Abstract: A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.

    Abstract translation: 通过将牺牲和结构材料沉积在衬底上以在与衬底电连接的部件上形成结构层来形成微机电结构。 结构层的电位大于元件的电位。 结构材料的至少一部分被保护材料覆盖,该保护材料具有小于或等于部件的电位的电位。 牺牲材料用释放溶液除去。 保护材料和释放溶液中的至少一种被表面活性化,表面活性剂对组分的表面进行官能化。

    Method for topographical patterning of a device
    98.
    发明申请
    Method for topographical patterning of a device 失效
    装置的地形图案化方法

    公开(公告)号:US20020135266A1

    公开(公告)日:2002-09-26

    申请号:US09905037

    申请日:2001-07-13

    Abstract: The device of the present invention facilitates engaging mating elements, such as actuators used in disc drives, with a pattern on the device. The improved device includes arcuate edges between at least one of the sidewalls in the pattern and the surface of the device. The arcuate edges minimize some of the fracturing of the device that typically occurs when a mating element is inserted on or into the device. The present invention also relates to a method of fabricating a device. The method comprises positioning a mask in the form of a pattern relative to the device, and then etching the pattern into a surface on the device to form at least one sidewall and an arcuate edge such that the arcuate edge extends between the surface on the device and one of the sidewalls.

    Abstract translation: 本发明的装置有助于将配合元件(例如在盘驱动器中使用的致动器)与设备上的图案相啮合。 改进的装置包括图案中的至少一个侧壁和装置的表面之间的弧形边缘。 弧形边缘最小化当将配合元件插入或插入设备时通常发生的装置的一些破裂。 本发明还涉及一种制造装置的方法。 所述方法包括以相对于所述装置的图案的形式定位掩模,然后将所述图案刻蚀到所述装置上的表面中以形成至少一个侧壁和弓形边缘,使得所述弧形边缘在所述装置上的所述表面之间延伸 和一个侧壁。

    Biological identification system with integrated sensor chip
    99.
    发明申请
    Biological identification system with integrated sensor chip 有权
    具有集成传感器芯片的生物识别系统

    公开(公告)号:US20020123048A1

    公开(公告)日:2002-09-05

    申请号:US09848727

    申请日:2001-05-03

    Abstract: A microelectromechanical systems (MEMS) and integrated circuit (IC) based biosensor capable of sensing or detecting various ionic molecules and macromelecules (DNA, RNA or protein). The MEMS based biosensor may utilize a hybridization and enzyme amplification scheme and an electrochemical detection scheme for sensitivity improvement and system miniaturization. The biosensor or biosensors are incorporated on a single substrate. Preferably, the biosensor system comprises at least two electrodes. The electrodes may comprise a working electrode, a reference electrode and a counter (auxiliary) electrode. The biosensor or biosensors also provide an apparatus and method for confinement of reagent and/or solution in the biosensor or biosensors using surface tension at small scale. The confinement system provides controlled contacts between the reagent(s) and/or solution(s) with the components (i.e., electrodes) of the biosensor or biosensors using controllable surface properties and surface tension forces. The confinement system allows for incorporation of the biosensor or biosensors into a portable or handheld device and is immune to shaking and/or flipping. The invention also provide for a biosensor and/or sensors that are integrated with integrated circuit (IC) technologies. Preferably, the entire sensor system or systems are fabricated on a single IC substrate or chip and no external component and/or instrument is required for a complete detection system or systems. Preferably, the sensor system or systems are fabricated using the IC process and on a silicon substrate.

    Abstract translation: 基于微机电系统(MEMS)和基于集成电路(IC)的生物传感器能够感测或检测各种离子分子和大分子(DNA,RNA或蛋白质)。 基于MEMS的生物传感器可以利用杂交和酶扩增方案和用于灵敏度改善和系统小型化的电化学检测方案。 生物传感器或生物传感器结合在单个基底上。 优选地,生物传感器系统包括至少两个电极。 电极可以包括工作电极,参考电极和计数器(辅助)电极。 生物传感器或生物传感器还提供了使用小规模的表面张力限制生物传感器或生物传感器中的试剂和/或溶液的装置和方法。 限制系统使用可控的表面性质和表面张力提供试剂和/或溶液与生物传感器或生物传感器的组分(即电极)之间的受控接触。 限制系统允许将生物传感器或生物传感器并入便携式或手持式装置中,并且不受摇动和/或翻转的影响。 本发明还提供了与集成电路(IC)技术集成的生物传感器和/或传感器。 优选地,整个传感器系统或系统制造在单个IC衬底或芯片上,并且对于完整的检测系统或系统不需要外部组件和/或仪器。 优选地,传感器系统或系统使用IC工艺和硅衬底制造。

    MICROMACHINED STRUCTURE FOR OPTO-MECHANICAL MICRO-SWITCH
    100.
    发明申请
    MICROMACHINED STRUCTURE FOR OPTO-MECHANICAL MICRO-SWITCH 审中-公开
    机械式微动开关的微机械结构

    公开(公告)号:US20010046346A1

    公开(公告)日:2001-11-29

    申请号:US09366428

    申请日:1999-08-02

    Inventor: BRENT E. BURNS

    Abstract: An opto-mechanical micro-switch has a micromachined structure fabricated from a single silicon substrate. The micromachined structure includes an inner frame connected by a pair of beams to an outer frame. The beams define an axis of rotation around which the inner frame rotates relative to the outer frame. Flat walls are formed on the inner frame by an anisotropic etching process. When the inner frame rotates relative to the outer frame, the flat wall pivots into a vertical position to reflect or impede light passing from a light source to a light receiver. During fabrication, etch-stop material is selectively deposited in predefined regions of the single silicon substrate, and then a masking layer is formed and patterned. The anisotropic etching process is then performed through openings in the masking layer to form the inner frame and the outer frame. The etch-stop material prevents etching in the predefined regions that are located between the inner and outer frames, thereby forming the beams. In one embodiment, Permalloy regions are formed on the inner frame prior to the anisotropic etching process. These Permalloy regions are subsequently utilized as part of a drive motor to rotate the inner frame relative to the outer frame.

    Abstract translation: 光机械微型开关具有由单个硅衬底制造的微加工结构。 微加工结构包括通过一对梁连接到外框架的内框架。 梁限定旋转轴线,内框架围绕其旋转相对于外框架。 通过各向异性蚀刻工艺在内框架上形成平坦的壁。 当内框架相对于外框架旋转时,平壁枢转成垂直位置以反射或阻碍从光源通向光接收器的光。 在制造期间,将蚀刻停止材料选择性地沉积在单个硅衬底的预定区域中,然后形成掩模层并构图。 然后通过掩模层中的开口进行各向异性蚀刻工艺以形成内框架和外框架。 蚀刻停止材料防止位于内框架和外框架之间的预定区域中的蚀刻,从而形成梁。 在一个实施例中,在各向异性蚀刻工艺之前,在内框架上形成坡莫合金区域。 这些坡莫合金区域随后被用作驱动马达的一部分,以使内框架相对于外框架旋转。

Patent Agency Ranking