Abstract:
The present invention illustrates a bulk silicon etching technique that yields straight sidewalls, through wafer structures in very short times using standard silicon wet etching techniques. The method of the present invention employs selective porous silicon formation and dissolution to create high aspect ratio structures with straight sidewalls for through wafer MEMS processing.
Abstract:
A method of wet etching produces high-precision microneedle arrays for use in medical applications. The method achieves precise process control over microneedle fabrication, at single wafer or batch-level, using wet etching of silicon with potassium hydroxide (KOH) solution by accurately identifying the etch time endpoint. Hence, microneedles of an exactly required height, shape, sharpness and surface quality are achieved. The outcome is a reliable, reproducible, robust and relatively inexpensive microneedle fabrication process. Microneedles formed by KOH wet etching have extremely smooth surfaces and exhibit superior mechanical and structural robustness to their dry etched counterparts. These properties afford extra reliability to such silicon microneedles, making them ideal for medical applications. The needles can also be hollowed. Wet etched silicon microneedles can then be employed as masters to replicate the improved surface and structural properties in other materials (such as polymers) by moulding.
Abstract:
The present invention provides a method of fabricating a biosensor. The method includes providing a substrate which has a surface coating. The surface coating is deformable and the substrate includes a layered structure which has at least two electrically conductive layers separated by at least one electrically insulating layer. The method also includes imprinting a structure into the surface coating. Further, the method includes etching at least a region of the imprinted structure and the substrate to remove at least a portion of the structure and the substrate. The structure is shaped so that the etching forms at least a portion of the biosensor in the substrate and exposes at least a portion of each electrically conductive layer to form electrodes of the biosensor.
Abstract:
A method of making a microstructure with thin wall portions (T1-T3) includes a step of performing a first etching process to a material substrate having a laminate structure including a first conductive layer (11) and a second conductive layer (12) having a thickness of the thin wall portions (T1-T3), where the etching is performed from the side of the first conductive layer (11) thereby forming in the second conductive layer (12) pre thin wall portions (T1′-T3′) which has a pair of side surfaces apart from each other in an in-plane direction of the second conductive layer (12) and contact the first conductive layer (11). The method also includes a step of performing a second etching process from the side of the first conductive layer (11) for removing part of the first conductive layer (11) contacting the pre thin wall portions (T1′-T3′) to form the thin wall portions.
Abstract:
A method for suspending a movable structure form a support structure wherein first and second flat and thin arcuately shaped flexures are formed having spaced apart substantially planar and parallel opposing surfaces, each of the first and second flexures being structured for connection between a support structure and a movable structure to be suspended from the support structure and being aligned along a common axis of rotation between the support structure and the movable structure.
Abstract:
The tiltable-body apparatus including a frame member, a tiltable body, and a pair of torsion springs having a twisting longitudinal axis. The torsion springs are disposed along the twisting longitudinal axis opposingly with the tiltable body being interposed, support the tiltable body flexibly and rotatably about the twisting longitudinal axis relative to the frame member, and include a plurality of planar portions, compliant directions of which intersect each other when viewed along a direction of the twisting longitudinal axis. A center of gravity of the tiltable body is positioned on the twisting longitudinal axis of the torsion springs.
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.
Abstract:
The device of the present invention facilitates engaging mating elements, such as actuators used in disc drives, with a pattern on the device. The improved device includes arcuate edges between at least one of the sidewalls in the pattern and the surface of the device. The arcuate edges minimize some of the fracturing of the device that typically occurs when a mating element is inserted on or into the device. The present invention also relates to a method of fabricating a device. The method comprises positioning a mask in the form of a pattern relative to the device, and then etching the pattern into a surface on the device to form at least one sidewall and an arcuate edge such that the arcuate edge extends between the surface on the device and one of the sidewalls.
Abstract:
A microelectromechanical systems (MEMS) and integrated circuit (IC) based biosensor capable of sensing or detecting various ionic molecules and macromelecules (DNA, RNA or protein). The MEMS based biosensor may utilize a hybridization and enzyme amplification scheme and an electrochemical detection scheme for sensitivity improvement and system miniaturization. The biosensor or biosensors are incorporated on a single substrate. Preferably, the biosensor system comprises at least two electrodes. The electrodes may comprise a working electrode, a reference electrode and a counter (auxiliary) electrode. The biosensor or biosensors also provide an apparatus and method for confinement of reagent and/or solution in the biosensor or biosensors using surface tension at small scale. The confinement system provides controlled contacts between the reagent(s) and/or solution(s) with the components (i.e., electrodes) of the biosensor or biosensors using controllable surface properties and surface tension forces. The confinement system allows for incorporation of the biosensor or biosensors into a portable or handheld device and is immune to shaking and/or flipping. The invention also provide for a biosensor and/or sensors that are integrated with integrated circuit (IC) technologies. Preferably, the entire sensor system or systems are fabricated on a single IC substrate or chip and no external component and/or instrument is required for a complete detection system or systems. Preferably, the sensor system or systems are fabricated using the IC process and on a silicon substrate.
Abstract:
An opto-mechanical micro-switch has a micromachined structure fabricated from a single silicon substrate. The micromachined structure includes an inner frame connected by a pair of beams to an outer frame. The beams define an axis of rotation around which the inner frame rotates relative to the outer frame. Flat walls are formed on the inner frame by an anisotropic etching process. When the inner frame rotates relative to the outer frame, the flat wall pivots into a vertical position to reflect or impede light passing from a light source to a light receiver. During fabrication, etch-stop material is selectively deposited in predefined regions of the single silicon substrate, and then a masking layer is formed and patterned. The anisotropic etching process is then performed through openings in the masking layer to form the inner frame and the outer frame. The etch-stop material prevents etching in the predefined regions that are located between the inner and outer frames, thereby forming the beams. In one embodiment, Permalloy regions are formed on the inner frame prior to the anisotropic etching process. These Permalloy regions are subsequently utilized as part of a drive motor to rotate the inner frame relative to the outer frame.