Abstract:
A method for fabricating optical fibers having a rare-earth doped core and a fused silica cladding includes inserting a rare-earth doped soft glass rod into a fused silica tube, the ratio of the outer diameter (OD) to the inner diameter (ID) of the fused silica tube being at least 2 and as large as 50; heating the rod and tube combination in a furnace to selectively volatilize volatile constituents of the soft glass rod which are responsible for the low softening point so that the final composition of the core consists predominantly of SiO.sub.2 and the desired dopants such as rare earths, alkaline earths or other low vapor pressure materials; and drawing the perform into an optical fiber.
Abstract:
A method of making a preform for drawing optical fibers includes the steps of depositing a dopant material 3 in a dopant carrier chamber 1, heating the dopant material to cause it to vaporise at a predetermined rate, depositing from a mixture of a source material (GeCl.sub.4, SiO.sub.4, O.sub.2) and said vaporised dopant a mixture of solid components 8 and fusing said solid components to form a doped glass.
Abstract:
Hydroxyl free deposition with high efficiency and at a high deposition rate may be achieved, even with use of relatively inexpensive raw materials, by utilizing a ring-shaped plasma activated axial chemical vapor deposition obtaining 100% chemical conversion and fractional volatilization of impurities. The plasma is induced in an annular stream of a plasma-forming gaseous medium, and the reactant or reactants used in the axial chemical vapor deposition are introduced into the center of the ring-shaped plasma to be converted by the heat of the plasma flame into soot which is deposited on a bait. An annular stream of a cooling medium flows outwardly past the plasma flame and is circumferentially centered by an extension of the outer tubular element of a plasma torch in which the plasma is generated. An RF generator which induces the plasma is operated at a frequency exceeding 20 MHz to give the plasma flame the desired ring-sloped configuration.
Abstract:
A method of forming an article such as a light focusing fiber waveguide by applying to a substantially cylindrical starting member a plurality of layers of material, each layer having a progressively lower index of refraction. The assembly so formed is heated and drawn to reduce the cross-sectional area to form a fiber having a stepped radially varying composition. Alternatively, a plurality of layers of material, each having a progressively higher index of refraction are applied to the inner surface of a tubular member. The resulting substantially cylindrical hollow assembly is heated and drawn to reduce the cross-sectional area and to collapse the remaining inner hole to form a fiber having a solid cross-sectional area with a stepped radially varying composition.
Abstract:
A METHOD OF FORMING AN OPTICAL WAVEGUIDE BY FIRST FORMING A COATING OF GLASS ON THE INSIDE WALL OF A GLASS
TUBE, THE GLASS TUBE AND THE FIRST COATING BEING OF SUBSTANTIALLY SIMILAR MATERIAL. THEREAFTER, A SECOND COATING OF GLASS IS APPLIED TO THE INSIDE WALL OF THE GLASS TUBE OVER THE FIRST COATING, SAID SECOND COATING HAVING A PRESELECTED DIFFERENT INDEX OF REFRACTION FROM THAT OF THE FIRST COATING. THE GLASS TUBE AND COATING COMBINATION IS THEREAFTER DRAWN TO REDUCE THE CROSS-SECTIONAL AREA AND TO COLLAPSE THE SECOND AND INNER COATING OF GLASS TO FORM A FIBER HAVING A SOLID CROSS-SECTIONAL AREA. THE COLLASPSED INNER COATING FORMS THE FIBER CORE AND THE FIRST COATING FORMS THE CLADDING FOR THE FIBER WHILE THE EXTERIOR GLASS TUBE PROVIDES STRUCTURAL STRENGTH FOR THE FIBER.
Abstract:
There is disclosed a method and apparatus for providing optically pure water-free fused silica blanks, tubing and crucibles for use in forming optical waveguides, lenses, prisms, filters, and high temperature lamp envelopes, in which soot is deposited on a high purity graphite bait or refractory low expansion glass, glass-ceramic or suitable crystalline ceramic bait by a flame hydrolysis method in which the burner is located close to the bait. This results in an exceptionally dense soot preform. The preform is later sintered in an inert dry atmosphere by slowly inserting the soot covered bait into a furnace in such a manner that entrapped gas is forced from the fused silica during the slow insertion into the furnace maintained at a temperature above 1,400*C. The formation of bubbles within the fused silica is prevented because of the inert atmosphere and because the gases in the preform escape through the unsintered portions of the preform, thereby providing a crucible or blank of fused silica of exceptionally high optical quality.
Abstract:
A METHOD OF FORMING AN OPTICAL WAVEGUIDE BY FORMING A FIRST COATING OF GLASS HAVING A PREDETERMINED INDEX OF REFRACTION ON THE OUTSIDE PERIPHERAL WALL SRFACE OF A SUBSTANTIALLY CYLINDRICAL STARTER ROD OR MEMBER. THEREAFTER, A SECOND COATING OF GLASS IS APPLIED TO THE PERIPHERAL OUTSIDE SURFACE OF THE FIRST COATING, SAID SECOND COATING HAVING A PRESELECTED INDEX OF REFRACTION LESS THAN INDEX OF REFRACTION OF THE FIRST COATING. THE STARTER ROD OR MEMBER IS REMOVED FROM THE ASSEMBLY FOLLOWING THE APPLICATION OF EITHER THE FIRST OR SECOND COATING. THE RESULTING SUBSTANTIALLY CYLINDRICAL HOLLOW ASSEMBLY IS HEATED AND DRAWN TO REDUCE THE CORSS-SECTIONAL AREA AND
TO COLLAPSE THE FIRST AND INNER COATING OF GLASS TO FORM A FIBER HAVING A SOLID CROSS-SECTIONAL AREA. THE COLLAPSED FIRST AND INNER COATING FORMS THE FIBER CORE AND THE SECOND COATING FORMS THE CLADDING FOR THE FIBER.
Abstract:
An optical fibre, for use in the field of distributed measurement of temperature or deformation by optical reflectometry in the frequency domain using the Rayleigh backscattered signal in the fibre, includes a core doped with nanoparticles for example formed from gold particles covered with zirconium oxide, and can be subjected to high temperatures during the measurement. A method for producing the optical fibre includes a step of heat treatment during which the optical fibre is subjected, for a duration of at least one hour, to a heat treatment temperature higher than a maximum temperature to which it will be subjected during a measurement.
Abstract:
A continuous sol-gel process for producing silicate-containing glasses and glass ceramics is proposed, comprising the following steps:
(a) continuously feeding a silicon tetraalkoxide, a silicon alkoxide with at least one non-alcoholic functional group and an alcohol into a first reactor (R1), and at least partially hydrolyzing by the addition of a mineral acid to obtain a first product stream (A); (b) continuously providing a second product stream (B) in a second reactor (R2) by feeding a metal alkoxide component or continuously mixing an alcohol and a metal alkoxide component; (c) continuously mixing product streams (A) and (B) in a third reactor (R3) for producing a presol to obtain a third product stream (C); (d) continuously adding water or a diluted acid to the product stream (C) to obtain a sol (gelation); (e) continuously filling the emerging sol into molds to obtain an aquagel; (f) drying the aquagels to obtain xerogels; (g) sintering the xerogels to obtain silicate-containing glasses and glass ceramics.
Abstract:
One aspect relates to a method for the manufacture of doped quartz glass. Moreover, one aspect relates to quartz glass obtainable according to the method including providing a soot body, treating the soot body with a gas, heating an intermediate product and vitrifying an intermediate product.