Abstract:
A friction modifier for combustible fuels is provided that is prepared by combining a saturated carboxylic acid and an alkoxylated amine or etheramine. Furthermore, there also is an additive concentrate for use in fuels, especially in gasoline for internal combustion engines, comprising (a) a friction modifier comprising of a branched saturated carboxylic acid salt of an alkoxylated amine, such as isohexyloxypropylamine isostearate; (b) a detergent package, as well as the combustible fuels containing this additive concentrate. The particular selection of friction modifier (a) enables a stable additive concentrate to be formulated providing a significant benefit in friction loss when incorporated in gasoline used to fuel an internal combustion engine, and hence an improvement in fuel economy. Moreover, the use of the friction modifier (a) in combination with a detergent package permits increased fuel efficiency to be obtained without increasing the incidence of IVD deposits in combustion engines running on a fuel modified with the additive concentrate.
Abstract:
A stable, substantially clear and homogeneous fuel composition contains an additive comprising a nitrogen donor and carrier, the nitrogen donor being present in an amount sufficient to reduce the NOx emissions of the fuel when subject to combustion and the carrier being selected to render the nitrogen donor soluble and to give the additive a molecular weight compatible with the energy properties of the fuel.
Abstract:
There is provided use of a thermal stabiliser for increasing the thermal stability of a cetane improver in a fuel composition comprising (i) a fuel, and (ii) the cetane improver wherein the thermal stabiliser is a compound of the formula H—R1 wherein H is a group comprising a heterocyclic group and R1 is a hydrocarbyl group having from 10 to 200 carbons.
Abstract:
Disclosed herein is a composition comprising: (A) a lubricant, and (B) at least one alkyl hydrazide compound of the formula: wherein R1 is a hydrocarbon or functionalized hydrocarbon of from 1 to 30 carbon atoms, R2 and R3 are independently selected from the group consisting of hydrocarbon or functionalized hydrocarbons of from 1 to 30 carbon atoms and hydrogen.
Abstract:
Compositions comprising (a) an ethylene-mixed unsaturated ester copolymer or (b) two or more ethylene-unsaturated ester copolymers differing, for example, in their ester chains improve the low temperature properties of fuel oils.
Abstract:
A process for preparing amide alkoxylates. More specifically, the invention provides a butoxylation process for producing poly(oxyalkylene) amides and poly(oxyalkylene) esters via an exchange reaction of (trans-amidation/trans-esterification) and involving removal of the poly(oxyalkylene) esters in the product mixtures so that a better performance products can be obtained. The invention further relates to the use of these compounds as fuel additives to decrease intake valve deposits, positively affecting the engine's octane requirement, control the increase of combustion chamber deposits and improve fuel quality. The invention further discloses a composition used as engine fuel, characterized in that it contains said poly(oxyalkylene)amide as the fuel additive.
Abstract:
A drag-reducing polymer capable of dissolving even in cold fluids is described, along with a method for manufacturing said drag-reducing polymer. The drag-reducing polymer has at least one alpha-olefin monomer with between a four and nine carbon chain length and a co-monomer and has less than 25% monomers (molar content) with carbon chain lengths of 12 or longer. A drag-reducing polymer suspension is also described.
Abstract:
A fuel additive containing an alkylene-oxide-adducted hydrocarbyl amide is disclosed. The alkylene-oxide-adducted hydrocarbyl amide is surprisingly useful for improving the acceleration response and the driving performance of internal combustion engines when used as fuel additives in hydrocarbon-based fuels, such as gasoline fuel or diesel fuel.
Abstract:
The invention concerns an additive for motive fuel additive, in particular with low sulphur content not more than 500 ppm, consisting for the most part of a combination comprising 5 to 95 wt. % of a glycerol monoester R1—C(O)—O—CH2—CHO—CH2OH or R1—C(O)—O—CH(CH2OH)2, R1 being an alkyl chain containing 8 to 60 carbon atoms, or a monocyclic or polycyclic group comprising 8 to 60 carbon atoms, and from 5 to 95 wt % of a compound of formula R2—C(O)—X, R2 being an alkyl chain containing 8 to 24 carbon atoms, or a monocyclic or polycyclic group comprising 8 to 60 carbon atoms, and X being selected among (i) the groups OR0, R0 being a hydrocarbon radical comprising 1 to 8 carbon atoms, optionally substituted by one or several esters; and (ii) the groups derived from primary or secondary amines and alkanolamines with aliphatic hydrocarbon chain, comprising 1 to 18 carbon atoms.
Abstract:
The invention provides the use of a poly(hydroxy-carboxylic acid)amide or -ester derivative of general formula I: wherein R is the residue of an amine, an aminoalcohol or a polyol linked to the or each poly(hydroxycarboxylic acid) via an amide or ester linkage; R1 is hydrogen or optionally substituted hydrocarbyl group containing up to 50 carbon atoms; A is an optionally substituted hydrocarbyl group; n is from 1-100, preferably 1-10 and p is from 1-5, as a fuel additive acting as a detergent and as a lubricity additive in fuel compositions. Moreover, the invention provides a fuel oil composition comprising of a major amount of a fuel oil, and a minor amount of an the additive as well as a additive concentration for use in a fuel oil composition.