Abstract:
The invention relates to a block copolymer and the use thereof as a cold resistance additive of a fuel or combustible. The block copolymer comprises: (i) a block A consisting of a chain of structural motifs derived from at least one α,β-unsaturated alkyl methacrylate or acrylate monomer; and (ii) a block B consisting of a chain of structural motifs derived from at least one α,β-unsaturated monomer containing at least one aromatic ring. The invention also relates to an additive concentrate containing such a copolymer and to the use thereof as a TLF booster and, advantageously, as an anti-sedimentation additive.
Abstract:
The invention provides fuel mixtures containing fuel oil, glycerol, glycerol impurities and non-ionic surfactants. The mixtures remain homogeneous longer and are more chemically stable than previous mixtures. Upon combustion, the mixtures generate reduced SOx, NOx and particulate matter emissions compared to residual fuels and offer improved engine performance over previous mixtures.
Abstract:
A drag reducing composition for use in hydrocarbon streams which contains a finely divided, solid polyolefin friction reducing agent, a suspending medium comprised of water and a liquid organic carrier containing from 10 to 14 carbon atoms and having at least one hydroxyl group and a partitioning agent comprising a compound having a hydrophobic group and a hydrophilic group and exhibiting at least some surface activity.
Abstract:
The present invention relates to a fuel additive formulation applied to internal combustion engines formulated to reduce friction, corrosion, and wear in the internal combustion engines. The fuel additive in accordance with the present invention is a formulation of hexylene glycol and boric oxide. Reduction of engine wear and degradation due to reduction of friction and deposit formation is expected to result in increased engine efficiency, extension of engine life, and reduction in repair and maintenance costs.
Abstract:
Processes to produce ethylene copolymers using pyridyldiamido transition metal complexes, a chain transfer agent, and an activator are disclosed.
Abstract:
An additive composition for blending with fuel, the additive composition at least 3% w/w of a viscosity index (VI) improving polymer; and a solvent mixture including in the range of from 10 to 85% v/v of a middle distillate gas oil and at least 15% v/v of one or more components selected from aromatic hydrocarbons and oxygenates.
Abstract:
Quaternized terpolymer formed from (A) ethylene, (B) C2-C14-alkenyl esters of one or more aliphatic C1-C20-monocarboxylic acids or C1-C24-alkyl esters of acrylic acid or of methacrylic acid and (Cq) ethylenically unsaturated monomers which comprise at least one tertiary nitrogen atom which is partly or fully in quaternized form. The quaternized terpolymer is suitable as a fuel additive for reducing or preventing deposits, for reducing fuel consumption and for minimizing power loss in direct-injection diesel engines, especially in diesel engines with common-rail injection systems.
Abstract:
A drag reducing composition comprising a finely divided, solid polyolefin friction reducing agent formed from olefins containing from 2 to 30 carbon atoms, the polyolefin drag reducing agent suspended in a suspending medium and comprising 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate containing up to 10% by weight of water.
Abstract:
The invention relates to the use of at least one oil-soluble compound B) which acts as a nucleating agent for paraffin crystallization and which is selected from ethylene copolymers and 2 to 10.5 mole % of at least one ethylenically unsaturated carbonic ester for improving the response of cold flow improvers for mineral oils C), which are different from B), in middle distillates that contain at least one ashless, nitrogenous detergent additive A), which is an oil-soluble, amphiphilic compound that comprises at least one alkyl or alkenyl group bound to a polar group, said alkyl or alkenyl group having 10 to 500 C atoms and the polar group having 2 or more nitrogen atoms.