Abstract:
A method for treating petroleum, petroleum fraction, or natural gas, the process comprising: adding
a) a first component which is selected from material, particularly roots, of a plant of the genus Glycyrrhiza, and/or an arbuscular mycorrhizal fungi, and b) a second component which is selected from a plant material or -ingredient comprising plastids, algae and/or cyanobacteria,
to the petroleum, petroleum fraction, or natural gas.
Abstract:
Described herein are compositions for modifying fuels. The modified fuels are more efficient when compared to conventional fuels such as gasoline. Additionally, the modified fuels burn more efficiently and produce fewer emissions. Finally, the modified fuels also do not require any modifications to existing engines.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.
Abstract:
A method comprises a providing a carbohydrate; reacting the carbohydrate directly with hydrogen in the presence of a hydrogenolysis catalyst to produce a reaction product comprising a polyol; and then processing at least a portion of the reaction product to form a fuel blend.
Abstract:
Compositions containing phenolic antioxidant solutions are provided. The invention further provides methods of making and using such compositions as well as compositions that contain both biodiesel and at least one antioxidant concentrate solutions and blended fuel compositions containing biodiesel blended with other fuels.
Abstract:
A fuel composition contains a liquid fuel and a specific amount of nano-sized zinc oxide particles and a surfactant that does not contain sulfur atoms. The nano-sized zinc oxide particles can be used to either improve combustion or increase catalytic chemical oxidation of fuel.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.
Abstract:
Described herein are modified fuels with improved properties. The modified fuels are more efficient when compared to conventional fuels such as gasoline. Additionally, the modified fuels burn more efficiently and produce fewer emissions. Finally, the modified fuels also do not require any modifications to existing engines.
Abstract:
Additive composition for use in a fuel or lubricant formulation, comprising an active substance in an inclusion complex with a modified cyclodextrin of formula (I): wherein n is an integer from 6 to 20, and R1, R2 and R3 are each independently selected from hydrogen, optionally substituted alkyl, optionally substituted aryl and carbonyl, provided that R1, R2 and R3 are not all hydrogen. Also provided is a fuel or lubricant formulation comprising the additive composition, a premix for use in preparing the additive composition, and the use of a modified cyclodextrin (I) as a vehicle for an active substance in an additive composition or in a fuel or lubricant formulation.
Abstract:
The present invention relates to an aqueous pour point depressant dispersion composition comprising a thermoplastic polymer, preferably ethylene vinyl acetate (EVA); a dispersing agent; water; optionally an aqueous freezing point depressant; and optionally a stabilizing agent wherein the volume average particle size of the dispersed thermoplastic polymer is equal to or less than 1 micrometers and a method to make and use said composition.