Abstract:
A camshaft assembly may include a shaft and a lobe member fixed for rotation with the shaft. The lobe member may include a lobe extending radially outward from a base circle. The lobe may include a valve closing profile defined between a peak of the lobe and an ending point of the lobe on the base circle. The valve closing profile may define a closing flank and a closing ramp extending from an end of the closing flank to the ending point. The closing ramp may have a radial extent from the base circle at the end of the closing flank that is less than ten percent of the radial extent of the peak from the base circle and may have a first angular extent of at least ten degrees. A second angular extent defined between the peak and the ending point may be at least eighty degrees.
Abstract:
An engine assembly may include an engine structure, first and second intake valves, and a camshaft assembly. The engine structure may define a combustion chamber, a first intake port in communication with the combustion chamber and directing intake air flow toward a central region of the combustion chamber, and a second intake port in communication with the combustion chamber. The first intake valve may open and close the first intake port and the second intake valve may open and close the second intake port. The camshaft assembly may include a first intake lobe that opens the first intake valve and a second intake lobe that opens the second intake valve. The first intake lobe may be rotationally offset from the second intake lobe in a rotational direction of the camshaft assembly.
Abstract:
A cam follower for a rocker arm includes a cylindrical outer ring (11) having an outer circumference surface abutting on a cam, a support shaft (6) to support the outer ring (11), a plurality of rollers (12) arranged in an annular region between the support shaft (6) and the outer ring (11), and a side plate (16) composed of a ring-shaped disk penetrated by the support shaft (6), opposed to an end face (15) of the roller (12), and having an outer diameter Ds smaller than an inner diameter Dr of the outer ring (11), in which the side plate (16) is arranged at each end of the roller (12), and a relationship Lr
Abstract:
Provided is a variable valve operating apparatus for an internal combustion engine, which can favorably improve the mounting environment of an actuator in the aspect of achieving the improvement of coolability and the reduction of stress. The apparatus includes a guide rail which is provided in the outer peripheral surface of a cylindrical part respectively fixed to a camshaft; a projection part which is disposed so as to be engageable and disengageable with the guide rail; and an actuator which is disposed so as to oppose the cylindrical part and can protrude the projection part toward the guide rail. At least a part of the actuator is disposed so as to fit in a oval-shaped region which is virtually obtained by linking a base circle of a main cam and a base circle of a main cam seen from the axial direction of the camshaft in a state in which the projection part is not protruded toward the guide rail.
Abstract:
A camshaft assembly may include a first shaft, a second shaft, a first lobe and a second lobe. The second shaft may be coaxial with and rotatable relative to the first shaft. The first lobe may be fixed for rotation with the first shaft and adapted to open a first valve in communication with an engine combustion chamber. The first lobe may define a first valve opening region having a first angular extent. The second lobe may be fixed for rotation with the second shaft and adapted to open a second valve in communication with the engine combustion chamber. The second lobe may define a second valve opening region having a second angular extent greater than the first angular extent.
Abstract:
A vehicle engine includes: a cylinder head; a cam housing fixed to a top of the cylinder head; a cam cap fixed to a top of the cam housing; a camshaft rotatably supported between the cam housing and the cam cap, the camshaft supporting a cam; a rocker arm configured to be pushed by the cam; and a valve configured to operate by being pushed by the rocker arm. The vehicle engine being characterized by an oil pipe that is formed integrally with the cam housing.
Abstract:
A cam carrier assembly may include at least a cam carrier mounted on a cylinder head and including a support, an actuator shaft, a portion of which is mounted in the support and rotatable to control a valve life, and a cap mounted on the cylinder head and coupled to the at least a cam carrier to rotatably support the portion of the actuator shaft and surrounding and rotatably supporting the other portion of the actuator shaft, which is not surrounded by the support.
Abstract:
A small-sized vehicle has an oil control valve for a hydraulically-actuated mechanism of an engine, and provides good cooling of the oil control valve. A small-sized vehicle includes a spool valve for adjusting a hydraulic pressure for a hydraulically-actuated mechanism of an engine. The spool valve is disposed sideways of a cylinder portion (cylinder head) such that an axis of the spool valve extends substantially in parallel with an axis of the cylinder portion. Further, the spool valve is disposed at a position that is rearward of a radiator and that falls within a vertical span of the radiator in a vehicle side view.
Abstract:
In a valve drive arrangement for an internal combustion engine including a camshaft carrying axially movable cam elements provided with cams for operating gas exchange valves of the internal combustion engine and an actuation device having at least one shift element which is provided to shift cam element by means of a shifting gate between opposite axial positions, the valve drive arrangement has a change-over device for changing the axial shift direction of the shift element from one to the opposite axial position.
Abstract:
A mechanism for compensating systematic uni-directional torque bias imposed on a bi-directional drive actuator shaft, comprising a pallet disposed on an arm for rotation with the actuator shaft. A bucket tappet is engaged by the pallet and contains a helical compression spring. As the actuator shaft rotates and compresses the spring, the load on the pallet increases linearly but the length of the lever arm changes non-linearly at a rate different from the force applied to the pallet. This results in a non-linear torque about the actuator shaft. The torque can be the same at the compression spring preload state as it is at the full load state or it can be biased to be unsymmetrical based on the layout and size of the components and the stroke of the actuator shaft.