Abstract:
Disclosed are a mobile robot and a controlling method thereof. The mobile robot comprises: a case; and a sensor unit having two or more sending portions and two or more receiving portions arranged on an outer surface of the case separately and alternately. The plurality of sending portions and receiving portions are arranged in an alternating manner, thereby having a directivity. Also, since signals received through the receiving portions are judged based on a reference value, an area unallowable to be detected for an obstacle sensing is minimized, which allows an obstacle to be detected more accurately. When the obstacle corresponds to a side wall on the basis of a moving path of the mobile robot, a distance between the side wall and the mobile robot is calculated based on signals received by the receiving portion closest to the side wall. Accordingly, the mobile robot can move with maintaining a constant distance from the side wall.
Abstract:
A navigational control system for altering movement activity of a robotic device operating in a defined working area, comprising a transmitting subsystem integrated in combination with the robotic device, the transmitting subsystem comprising means for emitting a number of directed beams, each directed beam having a predetermined emission pattern, and a receiving subsystem functioning as a base station that includes a navigation control algorithm that defines a predetermined triggering event for the navigational control system and a set of detection units positioned within the defined working area in a known spaced-apart relationship, the set of detection units being configured and operative to detect one or more of the directed beams emitted by the transmitting system.
Abstract:
An autonomous mobile robot system for bounded areas including a navigation beacon and an autonomous coverage robot. The navigation beacon has a gateway beacon emitter arranged to transmit a gateway marking emission with the navigation beacon disposed within a gateway between the first bounded area and an adjacent second bounded area. The autonomous coverage robot includes a beacon emission sensor responsive to the beacon emission, and a drive system configured to maneuver the robot about the first bounded area in a cleaning mode in which the robot is redirected in response to detecting the gateway marking emission. The drive system is also configured to maneuver the robot through the gateway into the second bounded area in a migration mode.
Abstract:
A cleaner includes at least one cleaning component, a pump module, a driving module and a control system. The at least one cleaning component and the plate delimit at least one space. The pump module is connected to the at least one space to pump air out of the at least a space to form a negative air pressure in the at least one space so that the cleaner is sucked on the plate. The driving module is connected to the at least a cleaning component to drive the at least a cleaning component. The control system is coupled to the pump module and the driving module and controls the driving module to cause the at least one driven cleaning component to make a movement on the plate.
Abstract:
An autonomous coverage robot includes a chassis having forward and rearward portions and a drive system carried by the chassis. The forward portion of the chassis defines a substantially rectangular shape. The robot includes a cleaning assembly mounted on the forward portion of the chassis and a bin disposed adjacent the cleaning assembly and configured to receive debris agitated by the cleaning assembly. A bin cover is pivotally attached to a lower portion of the chassis and configured to rotate between a first, closed position providing closure of an opening defined by the bin and a second, open position providing access to the bin opening. The robot includes a body attached to the chassis and a handle disposed on an upper portion of the body. A bin cover release is actuatable from substantially near the handle.
Abstract:
A method for communication between a charging station and a robot, via a pair of power lines coupled between a power supply in the charging station and a battery in the robot. In operation, the power supply is sequentially switched between a first voltage level and a second voltage level in accordance with a predetermined signal pattern. The voltage level on the power lines in the robot is monitored and correlated with a specific command to be executed by the robot.
Abstract:
An autonomous coverage robot detection system includes an emitter configured to emit a directed beam, a detector configured to detect the directed beam and a controller configured to direct the robot in response to a signal detected by the detector. In some examples, the detection system detects a stasis condition of the robot. In some examples, the detection system detects a wall and can follow the wall in response to the detected signal.
Abstract:
Disclosed are a robot cleaner capable of performing a cleaning operation by selecting a cleaning algorithm suitable for the peripheral circumstances based on an analysis result of captured image information, and a controlling method thereof. The robot cleaner comprises an image sensor unit configured to capture image information when an operation instructing command is received, and a controller configured to analyze the image information captured by the image sensor unit, and configured to control a cleaning operation based on a first cleaning algorithm selected from a plurality of pre-stored cleaning algorithms based on a result of the analysis.
Abstract:
A piezoelectric debris sensor and associated signal processor responsive to debris strikes enable an autonomous or non-autonomous cleaning device to detect the presence of debris and in response, to select a behavioral mode, operational condition or pattern of movement, such as spot coverage or the like. Multiple sensor channels (e.g., left and right) can be used to enable the detection or generation of differential left/right debris signals and thereby enable an autonomous device to steer in the direction of debris.
Abstract:
The different illustrative embodiments provide a method for generating an area coverage path plan using sector decomposition. A starting point is identified on a worksite map having a number of landmarks. A first landmark in the number of landmarks is identified. A path is generated around the first landmark until an obstacle is detected. In response to detecting the obstacle, the path is made linear to a next landmark. The path is generated around the next landmark.