Abstract:
An amorphous carbon layer sticking on a carbon nanotube surface is remarkably reduced when a carbon nanotube is joined to a conductive substrate by bringing a single fibrous carbonaceous material in contact with the tip of the conductive substrate and covering at least a part of the contact portion with a conductive material while at lest either of the fibrous carbonaceous material or the conductive substrate is heated in a vacuum.
Abstract:
A field emission electron source for emitting electrons under applied electric field includes a cold cathode having molecules of an aromatic compound vapor-deposited thereon at a pointed end of said cold cathode.
Abstract:
A method of producing an electron source, a carbon nanotube (CNT) electron source, and a method of field emission using an electron source are disclosed. Embodiments provide convenient and effective mechanisms for improving thermal and mechanical performance of CNT electron sources, in one example, by heating a polymer-based matrix (e.g., PDMS) beyond its curing point until the polymer decomposes to form a cross linked and rigid matrix comprising silicon dioxide (SiO2). Additionally, embodiments provide convenient, effective and cost-efficient mechanisms for producing large-scale electron sources with controlled and nearly uniform CNT densities by spin coating a CNT/PDMS solution onto a substrate comprising an electrode, where an electric field is used to align the CNTs while the matrix is heated to convert the PDMS-based matrix to an SiO2-based matrix to secure the CNTs with respect to one another and with respect to the substrate.
Abstract:
Methods for selectively depositing nanostructures on a support layer include contacting the support layer with functionalized catalyst particles. The functionalized catalyst particles can form a self-assembled monolayer of catalyst particles on the support layer and the functionalized catalyst particles can be used to catalyze nanostructure growth. In one embodiment of the disclosed method, zinc oxide nanowires are grown on a patterned substrate using functionalized gold nanoparticles. Patterned arrays of self-assembled nanostructures and nanoscale devices using such nanostructure arrays are also described.
Abstract:
The present invention relates to a field emission device comprising an anode and a cathode, wherein said cathode includes carbon nanotubes which have been treated with an ion beam. The ion beam may be any ions, including gallium, hydrogen, helium, argon, carbon, oxygen, and xenon ions. The present invention also relates to a field emission cathode comprising carbon nanotubes, wherein the nanotubes have been treated with an ion beam. A method for treating the carbon nanotubes and for creating a field emission cathode is also disclosed. A field emission display device containing carbon nanotube which have been treated with an ion beam is further disclosed.
Abstract:
A preferred method for making a carbon nanotube-based field emission cathode device in accordance with the invention includes the following steps: preparing a solution having a solvent and a predetermined quantity of carbon nanotubes dispersed therein; providing a base with an electrode (101) formed thereon; forming a layer of conductive grease (102) on the base; distributing the solution on the layer of conductive grease, and forming a carbon nanotube layer (103) at least attached on the surface of the conductive grease after the solvent evaporates; and scratching the layer of conductive grease, in order to raise first ends of at least some of the carbon nanotubes from the conductive grease and thereby attain an effective carbon nanotube field emission cathode.
Abstract:
A method of fabricating a composite field emission source is provided. A first stage of film-forming process is performed by using RF magnetron sputtering, so as to form a nano structure film on a substrate, in which the nano structure film is a petal-like structure composed of a plurality of nano graphite walls. Afterward, a second stage of film-forming process is performed for increasing carbon accumulation amount on the nano structure film. Therefore, the composite field emission source with high strength and nano coral-like structures can be obtained, whereby improving the effect and life of electric field emission.
Abstract:
The present invention provides a composition for forming an electron emission source comprising a carbon-based material and a vehicle comprising a resin component and a solvent component. The resin component is a material that has less than 0.5 wt % of carbon deposits after undergoing a heat treatment at 450° C. under nitrogen atmosphere. The present invention also provides a method of preparing an electron emission source using the composition for forming an electron emission source, and an electron emission source that is prepared using the electron emission source. The electron emission source prepared using the composition has a small amount of the carbon deposits which improves its electric current density and lengthens its lifespan.
Abstract:
A method of fabricating a flexible emitter using a high molecular compound, including forming an electro-luminescent carbon material on a glass substrate in a predetermined pattern in order to form an emitter pattern thereon, forming an electrode layer of a predetermined height on the emitter pattern and the glass substrate, applying a polymer gel material on the electrode layer, curing the polymer gel material, and separating the flexible emitter from the glass substrate.
Abstract:
A pixel element for field emission display includes a sealed container having a light permeable portion, an anode, a cathode, a phosphor layer formed on an end surface of the anode, and a CNT string electrically connected to and in contact with the cathode with an emission portion of the CNT string suspending. The phosphor layer is opposite to the light permeable portion, and the emission portion is corresponding to the phosphor layer. Some of CNT bundles in the CNT string are taller than and project over the adjacent CNT bundles, and each of projecting CNT bundles functions as an electron emitter. The anode, the cathode, the phosphor layer and the CNT string are enclosed in the sealed container. The luminance of the pixel element is enhanced at a relatively low voltage.