Abstract:
The present invention relates to monoscopic and stereoscopic X-ray viewing. In order to provide an improved fluent work flow for X-ray viewing with an improved visual perception of depth information, it is provided to generate an electron beam from a cathode arrangement towards a target area of an anode; to deflect the electron beam such that the electron beam hits the anode at different target spots (94a, 94b), wherein the variation is provided as gradual variation of an impinging direction of the electrons such that a stepless transition between monoscopic and stereoscopic viewing is provided. In the monoscopic viewing, X-ray radiation is generated from a single focal spot position, and wherein in the stereoscopic viewing, X-ray radiation is generated from two focal spot positions spaced apart from each other in a first stereo-direction transverse to a viewing direction (92). It is further provided to generate X-ray radiation by the electron beam impinging on the target area, wherein the X-ray radiation is provided with different focal spots for monoscopic and stereoscopic X-ray imaging. Still further it is provided to display or otherwise provide image data of the object with a gradual transition between monoscopic and stereoscopic viewing.
Abstract:
A wavelength-classifying type X-ray diffraction device bombards a sample with characteristic X-rays generated from an X-ray generation source, and detects characteristic X-rays diffracted by the sample using an X-ray detector. The X-ray generation source is composed of several metals of different atomic number, respective metals generating several characteristic X-rays of different wavelengths. An X-ray detector is composed of several pixels for receiving X-rays and outputting pulse signals corresponding to X-ray wavelengths. Pixels are respectively furnished with classification circuits. The classification circuits classify and output pixel output signals based on each of characteristic X-ray wavelengths. X-ray intensity is detected on a per-wavelength basis in individual pixels 12. Measurement data based on different wavelength X-rays are acquired simultaneously in just one measurement. Data of diffracted X-rays of different wavelengths are acquired using the entire region of the receiving surface of a two-dimensional detector.
Abstract:
An anode (30) is formed by building a carbon, such as a carbon reinforced carbon composite, or other ceramic substrate (50). A ductile, refractory metal is electroplated on the ceramic substrate to form a refractory metal carbide layer (52) and a ductile refractory metal layer (54), at least on a focal track portion (36). A high-Z refractory metal is vacuum plasma sprayed on the ductile refractory metal layer to forma vacuum plasma sprayed high-Z refractory metal layer (56), at least on the focal track portion.
Abstract:
In order to provide an X-ray imaging apparatus including a two-phase anode rotation mechanism driving circuit having a small and light configuration, one end of the main stator coil is connected to a three-phase full-bridge inverter circuit and the midpoint between two semiconductor switches of the first arm, one end of the auxiliary stator coil is connected to the midpoint between two semiconductor switches of the second arm, and the other ends of the main stator coil and the auxiliary stator coil are connected to the midpoint between two semiconductor switches of the third arm. The semiconductor switches are switched using an inverting circuit and a delay circuit so that a first AC voltage is supplied to the one end of the main stator coil and a second AC voltage, which is shifted in phase by 90° from the first AC voltage, is supplied to the one end of the auxiliary stator coil.
Abstract:
An x-ray arrangement includes a vacuum container in, which a rotary anode and a rotor of an electrical machine are disposed. The rotary anode and the rotor have a torque-proof connection to one another and are rotatably supported in the vacuum container, so that the rotary anode and the rotor are rotatable around an axis of rotation. Viewed in a direction of the axis of rotation, a laminated stator core is disposed in an area of the rotor. The area of the rotor, in relation to the axis of rotation, surrounds the vacuum container radially outwards. A stator winding system is disposed in the laminated stator core. The stator winding system has windings embodied as a yoke winding.
Abstract:
In one example, an x-ray target comprises a target track, a substrate, and an optional backing. The target track includes a base material and a grain growth inhibitor to reduce or prevent microstructure grain growth in the base material. The target track can be included as part of an x-ray tube anode, either of a rotary form or a stationary form.
Abstract:
An x-ray tube target and method of repairing a damaged x-ray tube target. The x-ray tube target includes an original substrate and a portion of the original substrate that includes a new portion of a substrate and a new target track that is attached to a void in the original substrate. The method includes removal and replacement of damaged materials on used anode targets of x-ray tubes, thereby enabling recovery of used anode targets without the use of expensive and time consuming layer deposition methods. The method also avoids the high costs and long development cycles associated with known repair and refabrication methods for anode targets of x-ray tubes.
Abstract:
A rotary anode for an X-ray tube includes a ceramic base body that carries a focal path for emitting X-rays during electron irradiation. The ceramic base body is made of a mixture of silicon carbide and at least one high temperature-resistant diboride.
Abstract:
A medical imaging method comprising generating a radiation at a first energy level by a radiation source, generating a radiation at a second energy level different from the first energy level by the radiation source, emitting the generated radiations at an output of the radiation source towards a detector, and blocking or diverting the emitted radiations during at least one intermediate phase during which the radiation source switches in a transient way from one of the first energy level and the second energy level to the other of the first energy level and the second energy level.
Abstract:
A computed tomography apparatus (10) includes spaced radiation sources (82, 84), such as anodes, which each propagate a cone-beam of radiation (40, 50) into an examination region (14). A detector (22) detects radiation which has passed through the examination region. An attenuation system (55) interposed between the radiation sources and the examination region for cone-angle dependent filtering of the cone beams. The attenuation system allows rays which contribute little to a reconstructed image to be attenuated more than rays which contribute more.