Abstract:
A vacuum processing apparatus includes a vacuum processing chamber; a load lock chamber connected to the vacuum processing chamber via a gate valve or via a gate valve and a depressurized space and also connected to an atmospheric space via a door valve, an interior atmosphere of the load lock chamber being changed between a substantially atmospheric state and a depressurized state; an air blowing portion, provided at a vicinity of the door valve in the atmospheric space, for blowing a zonal airflow vertically downward from a position substantially even with or higher than a top end of a passageway of the door valve; and an air suctioning portion for suctioning the airflow or the inert gas from the air blowing portion by a vacuum force at a position substantially even with or lower than a bottom end of the passageway of the door valve.
Abstract:
Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by the following operations: (a) exposing the substrate surface to a first reactant in vapor phase under conditions allowing the first reactant to adsorb onto the substrate surface; (b) exposing the substrate surface to a second reactant in vapor phase while the first reactant is adsorbed on the substrate surface; and (c) exposing the substrate surface to plasma to drive a reaction between the first and second reactants adsorbed on the substrate surface to form the film.
Abstract:
A carrier assembly is provided for solar cell laminates that include an encapsulating layer and that are conveyed through a lamination plant having a conveying surface. The assembly includes a housing of heat conductive material defining an inner volume, the housing having an upper plate for receiving the laminates and a lower plate defining a plurality of apertures, the inner volume including at least one connecting element interconnecting the first and second plates. An air supply system provides a continuous outward air flow through the apertures when the lower plate is received on the conveying surface, wherein the airflow yields an elevated pressure on the lower plate for providing lift to the housing, allowing substantially friction-free movement of the housing relative to the conveying surface. A thermal transfer system provides thermal energy to the upper plate for melting and curing the encapsulating layer.
Abstract:
Provided is a substrate processing apparatus which includes: first and second vacuum transfer chambers which are partitioned from each other; processing chambers configured to perform a vacuum processing onto substrates; a load lock chamber installed to be sandwiched between the first and second vacuum transfer chambers, and including partition valves installed between the load lock chamber and a normal pressure atmosphere, and between the load lock chamber and each of the first and second vacuum transfer chambers; and substrate mounting tables inside the load lock chamber and configured to move between an upper position at which the substrates are transferred between the load lock chamber and the normal pressure atmosphere, and a lower position at which the substrates are transferred between the load lock chamber and the first or second vacuum transfer chamber.
Abstract:
A semiconductor processing station is provided. The semiconductor processing station includes a first platform, a second platform and a vacuum tunnel, wherein the first platform has a first load lock and a first plurality of chambers, and the second platform has a second load lock and a second plurality of chambers, and the vacuum tunnel connects the first and the second load locks.
Abstract:
A substrate processing system including a load port module configured to hold at least one substrate container for storing and transporting substrates, a substrate processing chamber, an isolatable transfer chamber capable of holding an isolated atmosphere therein configured to couple the substrate processing chamber and the load port module, and a substrate transport mounted at least partially within the transfer chamber having a drive section fixed to the transfer chamber and having a SCARA arm configured to support at least one substrate, the SCARA arm being configured to transport the at least one substrate between the at least one substrate container and the processing chamber with but one touch of the at least one substrate, wherein the SCARA arm comprises a first arm link, a second arm link, and at least one end effector serially pivotally coupled to each other, where the first and second arm links have unequal lengths.
Abstract:
The invention provides coating units, heat-treating units, and a first main transport mechanism for transporting substrates to each of these treating units. The substrates are transferred from the first main transport mechanism to a second main transport mechanism through a receiver. When a substrate cannot be placed on the receiver, this substrate is placed on a buffer. Thus, the first main transport mechanism can continue transporting other substrates. The other substrates in the treating units are transported between the treating units without delay, to receive a series of treatments including coating treatment and heat treatment as scheduled. This prevents lowering of the quality of treatment for forming film on the substrates.
Abstract:
The present disclosure provides a system and method for processing a semiconductor substrate wherein a substrate is received at a load lock interface. The substrate is transferred from the load lock interface to a process module using a first module configured for unprocessed substrates. A manufacturing process is performed on the substrate within the process module. Thereafter, the substrate is transferred from the process module to the load lock interface using a second module configured for processed substrates.
Abstract:
A locking gate device suitable for selectively blocking the flow of fluid and/or articles through a pair of openings defined by two spaced-apart members is provided. The spaced-apart members may be opposing walls or flanges of two adjacent processing chambers or vessels in a pressurized heating system. The locking gate device includes a gate assembly that is movable within a gate-receiving space defined between opposed sealing surfaces of the spaced-apart members. The gate assembly comprises a pair of sealing plates and a drive member shiftable relative to the sealing plates. As the drive member is shifted between a retracted position and an extended position, a pair of bearings disposed between the sealing plates and the drive member forces the sealing plates outwardly to contact the sealing surfaces of the spaced-apart members. This substantially blocks the flow-through openings defined by one or both sealing surfaces and restricts flow therethrough.
Abstract:
A microwave heating system configured to heat a plurality of articles is provided. The microwave heating system includes a thermalization zone for adjusting the temperature of the articles disposed therein to be substantially uniform and a microwave heating zone for heating the thermalized articles. At least one of the thermalization zone and microwave heating zone are liquid-filled and may include a plurality of fluid agitators for discharging jets of liquid medium toward the articles at multiple locations within the chamber.