Abstract:
A method and system for rapidly acquiring a spreading code, used in a code division multiple access (CDMA) system. A first long code and a second long code, with each long code having a length of N chips, are generated. The first long code is different from the second long code. The first long code and the second long code are transmitted at a first phase angle and at a second phase angle, respectively, on a carrier signal, over a communications channel using radio waves. The first long code and the second long code may be transmitted at an in-phase (I) angle and at a quadrature-phase (Q) angle, respectively, on the carrier signal. From the communications channel, an I-phase acquisition circuit and a Q-phase acquisition circuit may acquire, in parallel, the first long code and the second long code from the I-phase angle and the Q-phase angle, respectively, of the carrier signal by searching, in parallel, N/2 chips, the first long code and the second long code.
Abstract:
The present invention is a system and method for time synchronizing a plurality of base stations in a wireless communication system. The system determines an estimate of a timing accuracy associated with each base station. When a base stations's timing accuracy is over a threshold, the system determines if there is a neighboring base station with a better timing accuracy. The base station over the threshold is adjusted in response to an estimated difference between that base station and the neighboring base station.
Abstract:
Apparatus, and an associated method, by which to facilitate selection of with which network portion of a WLAN-cdma2000, or other multi-network radio communication system, that the mobile node should communicate. A parameter message is communicated to the mobile node. The parameter message includes indications, values of which are extracted from the message, buffered at a buffer, and subsequently accessed. A selector utilizes the accessed values to determine with which of the network portions that the mobile node shall communicate.
Abstract:
A device and method for mapping information streams to MAC layer queues, the method includes: utilizing a distributed media access control scheme to determine a configuration of the network; and adjusting an adjustable filter such as to map application parameters to the MAC layer queues, in response to the configuration of the network.
Abstract:
A method (400) and arrangement (200) for mitigation of intercell and intracell interference in a 3GPP cellular communication system (100) by, in a receiver in a cell of the system, deriving for a first channel in the cell a signal, representative of first channel transfer function (A(1)); deriving for at least a second channel originating in a different cell a signal (A(2 . . . M)), representative of second channel transfer function, based on: deriving a cell specific scrambling code (s), deriving a channel impulse response (h), and deriving a channelisation code (c); and performing multi-user detection using the first and second signals. Where the channelisation code is unknown, a substitute channelisation code is preferably substituted. It will be appreciated that the technique can be applied to both downlink and uplink. This provides the advantage that both intra-cell interference and intercell interference are mitigated.
Abstract:
The total powers transmitted and received by a given base station in a CDMA network, as a function of the sum of powers of channels dedicated to mobile terminals having active links with the given base station, are estimated by assuming the total powers transmitted by and received from the neighboring base stations at the given base station equal those of the given base station. Interstation to intrastation and intrastation to interstation interference factors are determined independently of the total powers transmitted to and received by the base stations and are a function only of path attenuation between mobile terminals in given positions and the base stations. The total transmitted and received powers of the given base station are estimated as a function of the ascertained interference factors, to circumvent a large number of iterations for a given power accuracy.
Abstract:
Decoding CFC codewords in the form of sums of QPSK-modulated spread symbols in a spread spectrum communications systems using comma-free codes with elements made of sums of QPSK-modulated secondary synchronization codes.
Abstract:
A code-division-multiple-access (CDMA) system employing spread-spectrum modulation. The CDMA system has a base station, and a plurality of subscriber units. The signals transmitted between the base station and subscriber unit use spread-spectrum modulation. The system and method transmits from the base station, a synchronization channel having a chip-sequence signal used by the plurality of subscriber units for synchronization. A first subscriber unit receives the synchronization channel, and determines timing from the synchronization channel. In order to initiate communications with the base station, the first subscriber unit transmits an access signal. The access signal has a plurality of power levels, which typically ramp up. The base station receives the access signal at a particular-power level. The base station then transmits to the first subscriber unit an acknowledgment signal. The first subscriber unit receives the acknowledgment signal, and transmits to the base station, a spread-spectrum signal.
Abstract:
Method for synchronising mobile equipment in a CDMA system comprising a plurality of base stations (11) for communicating with the mobile equipment (12). The base stations (11) are mutually synchronised, and each base station (11) has a synchronisation channel transmit timing offset within a synchronisation time slot (20). The method comprises the step of synchronising the mobile equipment (12) by matching a synchronisation code in the synchronisation time slot (20). Also the following steps are executed by the method: scanning a base radio signal (13) during at least one frame (15) for detecting a signal portion with predetermined characteristics, such as received power peaks (23), the signal portion not being the synchronisation code; deriving timing information associated with the CDMA system from the signal portion; and starting the synchronisation step of the mobile equipment (12) using the timing information.
Abstract:
A GSM1×-to-GSM handoff feature allows a GSM1× subscriber with a dual-mode (GSM1× and GSM modes) handset to seamlessly roam from GSM1× coverage areas to GSM coverage areas. This functionality is facilitated by the GSM1× system design which integrates a CDMA RAN with a standard GSM core network. The GSM1× system is built using standard CDMA as its air interface and an unmodified CDMA RAN with a standard IOS interface to the MSN. The only modifications are done at the MSN and the MS.