Abstract:
Systems and methods for improving the performance of a MIMO wireless communication system by reducing the amount of uplink resources that are needed to provide channel performance feedback for the adjustment of data rates on the downlink MIMO channels. In one embodiment, a method comprises encoding each of a set of data streams according to corresponding data rates, permuting the data streams on a set of MIMO channels according to a full permutation of combinations, transmitting the permuted data streams, receiving the permuted data streams, decoding and determining an SNR for each of the data streams, computing a condensed SNR metric for the set of data streams, providing the condensed metric as feedback, determining a set of individual SNR metrics for the data streams based on the condensed SNR metric, and adjusting the data rates at which the data streams are encoded based on the individual SNR metrics.
Abstract:
Systems and methodologies are described that facilitate integrating a list-sphere decoding design in a multiple input-multiple output (MIMO wireless communication environment. According to various aspects, optimal rank selection and CQI computation for an optimal rank can be performed in conjunction with a non-linear receiver, such as a maximum life (ML) MMSE receiver, a non-linear receiver with a list-sphere decoder, and the like. Optimal rank selection can be performed using a maximum rank selection protocol, a channel capacity-based protocol, or any other suitable protocol that facilitates rank selection, and CQI information can be generated based in part on effective SNRs determined with regard to a selected optimal rank.
Abstract:
In performing SVD-MIMO transmission, a set-up procedure is simplified while assuring a satisfactory decoding capability with a reduced number of antennas. A transmitter estimates channel information based on reference signals sent from a receiver, determines a transmit antenna weighting coefficient matrix based on the channel information, calculates a weight to be assigned to each of components of a multiplexed signal, and sends, to the receiver, training signals for respective signal components, the training signals being weighted by the calculated weights. On the other hand, the receiver determines a receive antenna weighting coefficient matrix based on the received training signals.
Abstract:
Certain aspects of the method may comprise receiving a plurality of spatially multiplexed communication signals from a plurality of transmit antennas at a base station. A plurality of vectors of baseband combined channel estimates may be generated based on phase rotation of the received plurality of spatially multiplexed communication signals. A plurality of pre-equalization weights may be generated based on the generated plurality of vectors of baseband combined channel estimates. The received plurality of spatially multiplexed communication signals may be modified based on the generated plurality of pre-equalization weights. At least a portion of the generated plurality of pre-equalization weights may be fed back to the base station for modifying subsequently transmitted spatially multiplexed communication signals which are transmitted from at least a portion of the plurality of transmit antennas at the base station.
Abstract:
A MIMO ARC transmitter derives demux streams (15, 20) carrying different parts of the information, at given data rates, processes each demux stream by coding and modulation (25, 30) before transmission over the channels, and varies (50, 165) the coding or modulation according to channel conditions, and controls the data rates (50, 155) according to conditions of the channels independently of the variations in coding and modulation. The separate control of processing and of data rates for each demux stream can provide a better balance of rapid response to changing conditions and efficiency in less rapidly changing conditions. The frequency of updating the processing can be limited since these take more time to adapt in the receiver. Sensitivity to rapid changes can be achieved by the data rate changes since these involve less overhead than changes in the processing.
Abstract:
A MIMO ARC transmitter derives demux streams (15, 20) carrying different parts of the information, at given data rates, processes each demux stream by coding and modulation (25, 30) before transmission over the channels, and varies (50, 165) the coding or modulation according to channel conditions, and controls the data rates (50, 155) according to conditions of the channels independently of the variations in coding and modulation. The separate control of processing and of data rates for each demux stream can provide a better balance of rapid response to changing conditions and efficiency in less rapidly changing conditions. The frequency of updating the processing can be limited since these take more time to adapt in the receiver. Sensitivity to rapid changes can be achieved by the data rate changes since these involve less overhead than changes in the processing.
Abstract:
A method for communication includes, in a transmitter having a first number of transmit antenna ports, setting an upper limit on a second number of spatial layers to be used by the transmitter to be less than the first number. An actual number of the spatial layers, which does not exceed the upper limit, is allocated for transmission to a given receiver. One or more streams of modulated symbols are mapped onto the allocated actual number of the spatial layers. The actual number of the spatial layers are transmitted from the transmitter to the given receiver.
Abstract:
To realize transmission performances equivalent to those of an MU-MIMO BLAST ZF-THP system without increasing a signal processing amount in a base station apparatus in a downlink MU-MIMO transmission system. A transmission apparatus is provided with a plurality of transmission antennas, generates a transmission signal addressed to each reception apparatus based on information indicating spatial correlation of channels to and from a plurality of reception apparatuses, space-multiplexes the generated each transmission signal in the same wireless resource, and transmits it to each reception apparatus. The transmission apparatus includes: an ordering determination part 601 which determines an order in which a transmission signal addressed to each reception apparatus is generated based on information indicating spatial correlation of channels; a linear filter generation part 603 which generates a linear filter based on the determined order; a THP part 605 which performs a THP process by using the determined order and the linear filter; and a linear filter multiplication part 607 which multiplies an output of the THP part 605 by the linear filter.
Abstract:
In order to minimize the control signaling overhead associated with transmitting CQI data from mobile stations to base stations in wireless communication networks supporting MU-MIMO, the CQI during MU-MIMO operation is estimated based on SU-MIMO CQI data, mobile station geometry data, and mobile station PMI (Precoding Matrix Index) data. More particularly, the base station maintains and updates a knowledge pool that correlates geometry data and learned impact of interfering precoder data to degradation of CQI values responsive to switching from SU-MIMO operation to MU-MIMO operations. Then, when the base station switches from SU-MIMO operation to MU-MIMO operation, it consults the knowledge pool to predict the degradation in CQI and subtracts them from the known, pre-switching SU-MIMO CQI feedback data for each relevant mobile station to predict the post-switching MU-MIMO CQIs for that mobile station.
Abstract:
In performing SVD-MIMO transmission, a set-up procedure is simplified while assuring a satisfactory decoding capability with a reduced number of antennas. A transmitter estimates channel information based on reference signals sent from a receiver, determines a transmit antenna weighting coefficient matrix based on the channel information, calculates a weight to be assigned to each of components of a multiplexed signal, and sends, to the receiver, training signals for respective signal components, the training signals being weighted by the calculated weights. On the other hand, the receiver determines a receive antenna weighting coefficient matrix based on the received training signals.