Abstract:
A manufacturing method of the thin fan includes the steps of: providing a plastic material containing a plurality of metal particles; processing the plastic material to form a housing; removing a part surface of the housing and forming a layout area and an extended circuit on the housing, wherein one terminal of the extended circuit connects to the layout area; disposing a first signal connecting structure on the housing, wherein the first signal connecting structure connects to the other terminal of the extended circuit; and disposing a metal layer on the layout area and the extended circuit.
Abstract:
A semiconductor package includes a circuit board having an inner circuit pattern and a plurality of contact pads connected to the inner circuit pattern, at least one integrated circuit (IC) device on the circuit board and making contact with the contact pads, a mold on the circuit board, the mold fixing the IC device to the circuit board, and a surface profile modifier on a surface of the IC device and a surface of the mold, and the surface profile modifier enlarging a surface area of the IC device and the mold to dissipate heat.
Abstract:
Embodiments of the present disclosure are directed to a doped tin oxide. The doped tin oxide includes a tin oxide and at least one oxide of a doping element. The doping element includes at least one of vanadium and molybdenum. The doped tin oxide includes an amount of the tin oxide ranging from 90 mol % to 99 mol %, and an amount of the at least one oxide ranging from 1 mol % to 10 mol %.
Abstract:
According to one embodiment of the present invention, an epoxy resin composition comprises an epoxy compound, a curing agent, and an inorganic filler, wherein the inorganic filler includes boron nitride (BN).
Abstract:
A conformal coating composition for protecting a metal surface from sulfur related corrosion includes a polymer and metal nanoparticles blended with the polymer. In accordance with some embodiments of the present invention, an apparatus includes an electronic component mounted on a substrate, metal conductors electronically connecting the electronic component, and a polymer conformal coating containing metal nanoparticles overlying the metal conductors. Accordingly, the metal nanoparticle-containing conformal coating is able to protect the metal conductors from corrosion caused by sulfur components (e.g., elemental sulfur, hydrogen sulfide, and/or sulfur oxides) in the air. That is, the metal nanoparticles in the conformal coating react with any corrosion inducing sulfur component in the air and prevent the sulfur component from reacting with the underlying metal conductors.
Abstract:
A method of manufacturing an electric wiring layer including an electric wiring includes obtaining a pressed powder molded layer by pressurizing a powder including a metal particle with an insulating layer, the metal particle being constituted by a metal particle having conductivity and a surface insulating layer which is located on a surface of the metal particle and which mainly contains a glass material; and irradiating the pressed powder molded layer with energy rays and forming the electric wiring in an irradiation region.
Abstract:
A semiconductor package includes a circuit board having an inner circuit pattern and a plurality of contact pads connected to the inner circuit pattern, at least one integrated circuit (IC) device on the circuit board and making contact with the contact pads, a mold on the circuit board, the mold fixing the IC device to the circuit board, and a surface profile modifier on a surface of the IC device and a surface of the mold, and the surface profile modifier enlarging a surface area of the IC device and the mold to dissipate heat.
Abstract:
A circuit board and a manufacturing method thereof are provided. According to the method, a dielectric layer is formed on a dielectric substrate, and the dielectric layer contains active particles. A surface treatment is performed on a surface of the dielectric first conductive layer is formed on the activated surface of the dielectric layer. A conductive via is formed in the dielectric substrate and the dielectric layer. A patterned mask layer is formed on the first conductive layer, in which the patterned mask layer exposes the conductive via and a part of the first conductive layer. A second conductive layer is formed on the first conductive layer and conductive via exposed by the patterned mask layer. The patterned mask layer and the first conductive layer below the patterned mask layer are removed.
Abstract:
A thermoplastic composition including a) a thermoplastic resin and b) a laser direct structuring (LDS) additive in an amount of at least 1 wt. % with respect to the weight of the total composition, wherein the LDS additive includes a mixed metal oxide including at least tin and a second metal selected from the group consisting of antimony, bismuth, aluminium and molybdenum, wherein the LDS additive includes at least 40 wt. % of tin and wherein the weight ratio of the second metal to tin is at least 0.02:1.
Abstract:
A conformal coating comprising modified porous silica particles is disclosed. A porous silica particle, such as MCM-14 or SBA-15 is modified with a sulfur gettering functionality, such as a phosphine compound, covalently bonded to silicon atoms in the porous silica particle. The conformal coating comprising the modified porous silica particles may be applied to metallic wiring areas of a circuit component, with the sulfur gettering functionality preventing sulfur from atmospheric gasses from penetrating the conformal coating to the metallic wiring.