Abstract:
Vias may be established in printed circuit boards or similar structures and filled with a monolithic metal body to promote heat transfer. Metal nanoparticle paste compositions may provide a ready avenue for filling the vias and consolidating the metal nanoparticles under mild conditions to form each monolithic metal body. The monolithic metal body within each via can be placed in thermal contact with one or more heat sinks to promote heat transfer.
Abstract:
A method of manufacturing includes bonding a paste material to an organic substrate by a polymer thick film (PTF) process to form a PTF trace, coating a sinterable material over the PTF trace, and sintering the sinterable material to the PTF trace.
Abstract:
The invention provides processes for the manufacture of conductive transparent films and electronic or optoelectronic devices comprising same.
Abstract:
There is provided an electric connection member having a substrate, an insulating adhesive layer provided on the substrate, and a conductive interconnect, wherein the electric connection member is provided with a recess that opens at a side of the insulating adhesive layer, the conductive interconnect is disposed in the recess, a metal nano-ink is disposed on the conductive interconnect, and all of the metal nano-ink is contained inside the recess.
Abstract:
Catalysts include nanoparticles of catalytic metal and dextrin as a stabilizer in molar ratios which enable stabilization of the catalyst during storage and during electroless metal plating. The catalysts are environmentally friendly and are tin free. The catalysts adhere well to dielectric materials of printed circuit boards including the walls of through-holes.
Abstract:
An electromagnetic interference (EMI) shielded device which includes an object to be shielded and an EMI shielding material encompassing the object. The EMI shielding material is made up of, but not limited to a broadband biopolymer or polymer dissolved in organic solvents, and metal and carbon-based nano-powders or nanoparticles. The specific makeup of the shielding material and fabrication procedure of the shielding material is also included herein.
Abstract:
A method of bonding two different substances includes the steps of: applying a bonding material containing a flux component that includes an organic material having at least two carboxyl groups to a bonding surface of a bonding object, disposing an object to be bonded on the bonding material, performing preliminary firing at a preset temperature in a state in which the object to be bonded is disposed, and performing a main firing by heating at a temperature higher than the temperature of the preliminary firing.
Abstract:
Provided are a conductive pattern forming method and a composition for forming a conductive pattern by photo irradiation or microwave heating, capable of increasing the conductivity of the conductive pattern. A conductive pattern is formed by preparing a composition for forming a conductive pattern comprising, copper particles each having a copper oxide thin film on the entirety or a part of the surface thereof, copper oxide particles, a reducing agent such as a polyhydric alcohol, a carboxylic acid, or a polyalkylene glycol, and a binder resin; forming a printed pattern having any selected shape on a substrate using this composition for forming a conductive pattern; and subjecting the printed pattern to photo irradiation or microwave heating to generate a sintered body of copper.
Abstract:
A bonded product is obtained by applying a silver paste containing silver nanoparticles having an average primary particle diameter of 1 to 200 nm, and performing firing. A diameter of a crystallite of the bonded product on a (111) plane of Ag when heated at 250° C. for 10 minutes in an inert atmosphere is 65 nm or larger.
Abstract:
A bonding material using silver nanoparticles considerably changes in coating-material property in response to a slight change in composition, and the stability thereof has been insufficient for large-amount application. A bonding material which uses silver nanoparticles, meets the requirements for mass printing, attains dimensional stability, and gives a smooth printed surface is provided. The bonding material includes silver nanoparticles which have at least an average primary particle diameter of 1 nm to 200 nm and have been coated with an organic substance having 8 or less carbon atoms, a dispersion medium, and a viscosity modifier composed of an organic substance, and has a viscosity (measured at a shear rate of 15.7 [1/s]) of 100 Pa·s or lower and a thixotropic ratio (measured at a shear rate of 3.1 [1/s]/measured at a shear rate of 15.7 [1/s]) of 4 or lower.