Abstract:
An integrated circuit mounted board includes a printed wiring board and an integrated circuit bare chip mounted on the printed wiring board. The printed wiring board includes a metal base, an insulating member made of an insulating material and disposed on the metal base, and a wiring pattern disposed on the insulating member. The wiring pattern includes an electrode part to which the integrated circuit bare chip is electrically coupled. The insulating member includes an under region being opposite to the electrode part. The metal base includes a metal substrate and a metal portion protruding from the metal substrate. The metal portion is buried in the under region of the insulating member.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting a second adhesive on the base, mounting a substrate with a conductive pattern on the second adhesive, mounting a first adhesive on the substrate and mounting a conductive layer on the first adhesive, then flowing the first adhesive upward between the post and the conductive layer and flowing the second adhesive upward between the post and the substrate, solidifying the adhesives, then providing a conductive trace that includes a pad, a terminal, the conductive pattern, first and second vias and a selected portion of the conductive layer, mounting a semiconductor device on the post, wherein a heat spreader includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post, a base and a ceramic block. The post extends upwardly from the base into an opening in the adhesive, the base extends laterally from the post and the ceramic block is embedded in the post. The semiconductor device overlaps the ceramic block, is electrically connected to the conductive trace and is thermally connected to the ceramic block. The adhesive extends between the post and the conductive trace and between the base and the conductive trace. The conductive trace provides signal routing between a pad and a terminal.
Abstract:
Magnetic field distribution and mutual capacitance control for transmission lines are provided. A first circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, and attaching a first trace to the second surface of the dielectric material. A surface profile of the reference plane layer is modified to decrease a resistance of a return current signal path through the reference plane layer, to reduce a magnetic field coupling between the first trace and a second trace. A second circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, attaching a trace to the dielectric material, and forming a solder mask layer on the dielectric material layer over the trace. An effective dielectric constant of the solder mask layer is modified to reduce or increase a mutual capacitance between the first trace and a second trace on the dielectric material.
Abstract:
A method of making a semiconductor chip assembly includes providing a post, a base, a support layer and an underlayer, wherein the post extends above the base and the support layer is sandwiched between the base and the underlayer, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the post with an aperture in the conductive layer, then flowing the adhesive upward between the post and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, providing a heat spreader that includes the post, the base, the underlayer and a thermal via that extends from the base through the support layer to the underlayer, then mounting a semiconductor device on the post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of manufacturing a circuit apparatus includes forming a plurality of pierced holes in a metal substrate. A first wiring layer is formed on one side of the metal substrate via a first insulating layer, and a second wiring layer is formed on the other side of the metal substrate via a second insulating layer. A conductor layer is formed in at least some of the plurality of pierced holes to establish a connection between the first wiring layer and the second wiring layer. A circuit element is connected to the first wiring layer on the one side of the metal substrate. When a plurality of pierced holes are formed, protrusions are formed on a surface of the metal substrate at least along either edge of each of the pierced holes provided with the conductor layer to protrude in a convex manner from the surface of the metal substrate.
Abstract:
An optical module includes: a flexible board having a first surface on which a component is mounted and a second surface opposite to the first surface; a bottom electrode part having a bottom surface on which a heat release electrode is provided, the bottom electrode part mounted on the first surface of the flexible board; and a heat release member configured to absorb heat from the bottom electrode part and release the heat to outside. The heat release member is arranged close to said second surface of the flexible board at a position where the bottom electrode part is mounted.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post and a base. The conductive trace includes a pad, a terminal and a plated through-hole. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, and the base extends laterally from the post. The conductive trace provides signal routing between the pad and the terminal using the plated through-hole.
Abstract:
A light emitting assembly includes: a heat sink having a base wall and at least one mesa protruding from the base wall; and at least one light emitting package unit having at least one light emitting package bonded to the mesa so as to transfer heat generated from the light emitting package to the base wall through the mesa. A circuit board includes a substrate that is formed with at least one through-hole, and is provided with a conductive contact unit that is formed on the substrate. The heat sink is attached to the substrate such that the mesa protrudes from the base wall into and through the through-hole in the substrate so as to be bonded to the light emitting package.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and first and second adhesives. The heat spreader includes a first post, a second post and a dielectric base. The conductive trace includes a pad and a terminal. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The first post extends from the dielectric base in a first vertical direction into a first opening in the first adhesive, the second post extends from the dielectric base in a second vertical direction into a second opening in the second adhesive and the dielectric base contacts and is sandwiched between and extends laterally from the posts. The conductive trace provides signal routing between the pad and the terminal.