Abstract:
Fluid ejection nozzles having a tapered section leading to a straight walled bore are described. Both the tapered section of the nozzle and the straight walled bore are formed from a single side of semiconductor layer so that the tapered section and the bore are aligned with one another, even when an array of nozzles are formed across a die and multiple dies are formed on a semiconductor substrate.
Abstract:
Fluid ejection nozzles having a tapered section leading to a straight walled bore are described. Both the tapered section of the nozzle and the straight walled bore are formed from a single side of semiconductor layer so that the tapered section and the bore are aligned with one another, even when an array of nozzles are formed across a die and multiple dies are formed on a semiconductor substrate.
Abstract:
A method includes depositing a layer of a sacrificial material in a first region above a substrate. The first region of the substrate is separate from a second region of the substrate, where a corrosion resistant film is to be provided above the second region. The corrosion resistant film is deposited, so that a first portion of the corrosion resistant film is above the sacrificial material in the first region, and a second portion of the corrosion resistant film is above the second region. The first portion of the corrosion resistant film is removed by chemical mechanical polishing. The sacrificial material is removed from the first region using an etching process that selectively etches the sacrificial material, but not the corrosion resistant film.
Abstract:
The present application is directed to electrostatic actuators, and methods of making electrostatic actuators. In one embodiment, an electrostatic actuator of the present application can include an electrode layer and a mechanical member. The electrode layer can include a removed portion that is free of a landing pad. The mechanical member can be positioned in proximity to the electrode layer so as to provide a gap therebetween. The mechanical member can further include a dimple structure protruding out into the gap and aligned with the removed portion of the electrode layer. When in operation, the mechanical member can be capable of deflecting toward the electrode layer. The electrostatic actuator can be used in a fluid drop ejector for ink jet recording or printing devices.
Abstract:
A slot is formed that reaches through a first side of a silicon substrate to a second side of the silicon substrate. A trench is laser patterned. The trench has a mouth at the first side of the silicon substrate. The trench does not reach the second side of the silicon substrate. The trench is dry etched until a depth of at least a portion of the trench is extended approximately to the second side of the silicon substrate (12). A wet etch is performed to complete formation of the slot. The wet etch etches silicon from all surfaces of the trench.
Abstract:
A bonding method of silicon base members is provided. The bonding method of silicon base members comprises: applying an energy to a first silicon base member including Si—H bonds to selectively cut the Si—H bonds so that the first silicon base member is cleaved and divided to one silicon base member and the other silicon base member, and the one silicon base member having a cleavage surface and dangling bonds of silicon obtained by cutting the Si—H bonds; and bonding the cleavage surface of the one silicon base member and a surface of a second silicon base member on which dangling bonds of silicon are exposed to thereby bond the cleavage surface and the surface together through their dangling bonds.
Abstract:
A silicon nitride layer is formed on at least a back side of a silicon wafer substrate of a semiconductor device. An oxide layer is formed on at least the silicon nitride layer on the back side of the substrate. The oxide layer protects the silicon nitride layer during processing of the device. The oxide layer is removed prior to packaging the device. After components have been formed on a front side of the substrate opposite the back side, packaging is attached to the silicon nitride layer. The components provide a functionality of the device. The silicon nitride layer completely remains on the back side of the substrate after fabrication of the device has been completed. The silicon nitride layer is adapted to minimize and does minimize bowing of the device.
Abstract:
An inkjet printer with a nozzle plate that has an exterior surface with formations for reducing its co-efficient of static friction. By reducing the co-efficient of static friction, there is less likelihood that paper dust or other contaminants will clog the nozzles in the nozzle plate. Static friction, or “stiction” as it has become known, allows dust particles to “stick” to nozzle plates and thereby clog nozzles. By patterning the exterior of the nozzle plate with raised formations, dust particles can only contact the outer extremities of each formation. This reduces friction between the particles and the nozzle plate so that any particles that contact the plate are less likely to attach, and if they do attach, they are more likely to be removed by printhead maintenance cleaning cycles.
Abstract:
An integrated semiconductor heating assembly includes a semiconductor substrate, a chamber formed therein, and an exit port in fluid communication with the chamber, allowing fluid to exit the chamber in response to heating the chamber. The integrated heating assembly includes a first heating element adjacent the chamber, which can generate heat above a selected threshold and bias fluid in the chamber toward the exit port. A second heating element is positioned adjacent the exit port to generate heat above a selected threshold, facilitating movement of the fluid through the exit port away from the chamber. Addition of the second heating element reduces the amount of heat emitted per heating element and minimizes thickness of a heat absorption material toward an open end of the exit port. Since such material is expensive, this reduces the manufacturing cost and retail price of the assembly while improving efficiency and longevity thereof.
Abstract:
Provided is a substrate preparation method for a micro-electromechanical system (MEMS) fabrication process. The method includes the step of depositing at least four metal layers interspersed with interlayer dielectric (ILD) layers onto a silicon wafer substrate. A passivation layer is deposited onto an outermost metal layer and at least a portion of the passivation layer is masked with a photoresist. A pit is etched through the photoresist in the substrate, said pit having a base and sidewalls. Etching is carried out along an edge of the substrate to expose the last metal layer to define bonding pads. A step of etching is carried out on either side of the pit to expose the outermost metal layer to define electrode portions. The bonding pads are for operatively connecting a microprocessor for controlling a heater element suspended in the pit between the electrode portions.