Abstract:
A method of manufacturing a floating structure capable of providing increased device yield. The method includes: a) forming an insulation film, a predetermined area of which is removed, between a first substrate and a second substrate; and b) forming a floating structure in the removed predetermined area.
Abstract:
A method of producing a device with a movable portion spaced apart from a support wafer comprises a step of providing the support wafer having a structured surface and a further step of providing a device wafer with a backing layer and a device layer disposed thereon. Further, the method comprises the step of generating a first planarization layer from a first starting material on the support wafer with a first method to fill in the structures of the structured surface of the support wafer, whereby a surface with a first degree of planarization is obtained. Further, the method comprises a step of generating a second planarization layer from a second starting material on the planarized surface of the support wafer with a second method to obtain a surface with a second degree of planarization, which is higher than the first degree of planarization, wherein the first and second planarization layers can be removed together. Additionally, the support wafer is connected to the device wafer such that the device layer and the planarized surface of the support wafer are connected. Then, removing the backing layer of the device wafer is performed, followed by structuring the resulting structure and removing the first and second planarization layers via a common method to generate the moveable portion of the device.
Abstract:
An electronic device comprises a substrate comprising a first surface and a second surface, a substrate carrier comprising a first surface and a second surface, and an inorganic material bonding the second surface of the substrate and the second surface of the substrate carrier.
Abstract:
Process for producing a multilayer arrangement having a metal layer, in which a metal layer is applied to a surface of a first wafer and at least one interlayer is applied to the metal layer. Furthermore, a second wafer is applied to the interlayer and then the first wafer is removed, so that the metal layer is uncovered.
Abstract:
A method for joining a silicon plate to a second plate, a laser beam being directed through the silicon plate at the second plate. In the process, the wavelength of the laser beam is selected in such a way that only a negligibly small amount of energy is absorbed in the silicon plate. A strongly absorbent material is hotmelted by the laser beam's energy and then produces a bond between the silicon plate and the second plate.
Abstract:
Object of the present invention are components with three dimensional structure prepared by thick film technology by print, where between the printed layers is inserted at least one membrane. The membrane is according to the present to invention at least in a part of the final product. The membrane can be provided with holes which are necessary for next technological steps. The inserted membranes can have pores of the size of 50˜tm to 10 nm and a thickness of 1 to 200˜tm. Method of producing of components with three-dimensional structure by thick film printing technology according to the invention lies in that between some of the printed layers is inserted a suitable membrane, which allows to lay on next layers without influence to previous layers. The printing can be done by screen-printing.
Abstract:
A microelectromechanical system includes a first wafer, a second wafer including a moveable portion, and a third wafer. The movable portion is movable between the first wafer and the third wafer. The first wafer, the second wafer, and the third wafer are bonded together.
Abstract:
A wafer-scale fabrication method for providing MEMS assemblies having a MEMS subassembly sandwiched between and bonded to a cap and a base is provided. The MEMS subassembly includes at least one MEMS device element flexibly connected to the MEMS assembly. The vertical separation between the MEMS device element and an electrode on the base is lithographically defined. Precise control of this critical vertical gap dimension is thereby provided. Fabrication cost is greatly reduced by wafer scale integration.
Abstract:
A method of joining a workpiece and a microstructure by light exposure, a microstructure obtainable by the method comprising a workpiece joined thereto, means thereto and use thereof; in particular a microstructure-forming composition comprising a light-sensitive, structure-forming material comprising one or more photo resist materials which are sensitive to preferably UV-light, and a light-absorbing material comprising one or more light-absorbing substances absorbing preferably IR light and being in an amount sufficient to produce heat upon exposure to said absorbed light; a microstructure-forming preparation comprising such composition; a method of producing a microstructure on a substrate; and a microstructure obtainable by the method; a method of joining a workpiece and a microstructure, a microstructure obtainable by the method comprising a workpiece joined thereto, e.g. for producing closed micro flow channels in a micro flow system; and use of such a microstructure, e.g. in lab-on-chip applications, in point-of-care systems, in high-through-put screening systems, preferably in systems for screening active compounds in fluids, in particular biological fluids.
Abstract:
A method for fabricating a vertical integrated circuit is disclosed. Integrated circuits are fabricated on a substrate with layers of predetermined weak and strong bond regions where deconstructed layers of integrated circuits are fabricated at or on the weak bond regions. The layers are then peeled and subsequently bonded to produce a vertical integrated circuit. An arbitrary number of layers can be bonded and stacked in to a separate vertical integrated circuit. Also disclosed are methods of creating edge interconnects and vias through the substrate to form interconnections between layers and devices thereon.