Abstract:
A positioning pin 31 is inserted in a pin insertion hole 30 penetrating through a rotor 3 in an axial direction, and has both end portions held by a housing 1 and a cover 12 to prevent falling out thereof. A protrusion 31a of the positioning pin 31 protruding toward an inner side of a camshaft fitting recess 3g is engaged with a pin engagement groove 110 recessed on an outer circumference surface of an intake side camshaft 100, whereby the rotor 3 and the intake side camshaft 100 are positioned in a rotation direction.
Abstract:
In a motor vehicle camshaft adjusting device which comprises an open- and/or closed-loop control unit for adjusting the camshaft phase position in a normal operating mode to a temporarily intermittently constant phase position, the open- and/or closed loop control unit has an engine start operating mode in which the camshaft phase position is advanced during opening of the valve so as to provide a valve opening angle range which is smaller than a geometric normal opening angle range based on a crankshaft angle range.
Abstract:
A camshaft phaser includes a housing with an array of internal splines formed within a bore. A harmonic gear drive unit is disposed within the housing and includes a circular spline and a dynamic spline, a flexspline disposed radially within the circular spline and the dynamic spline, a wave generator disposed radially within the flexspline, and a rotational actuator connectable to the wave generator. One of the circular spline and the dynamic spline is fixed to the housing. A hub is rotatably disposed radially within the housing and attachable to the camshaft and fixed to the other of the circular spline and the dynamic spline. A back plate has an array of external splines engaged in a sliding fit with the array of internal splines for transmitting torque from the back plate to said housing. The back plate also has an input sprocket for receiving rotational motion, in use.
Abstract:
A variable valve operating apparatus for an internal combustion engine includes a drive camshaft, and a driven cam lobe that is rotatably supported by the drive camshaft. The variable valve operating apparatus further includes a control sleeve that has a raceway surface, a center of which is eccentric with respect to a center of rotation of its own. The variable valve operating apparatus further includes a link mechanism that is connected to each of the drive camshaft and the driven cam lobe and has a control roller which is in contact with the raceway surface. The variable valve operating apparatus further includes an actuator that drives the control sleeve. The variable valve operating apparatus further includes a control amount of the actuator is controlled to change a moving amount of the raceway surface in the above described plane direction in accordance with an operation condition of an internal combustion engine.
Abstract:
A variable valve operating apparatus includes a drive camshaft that is rotationally driven by the rotational force of the crankshaft, and a driven cam lobe that is rotatably supported by the drive camshaft. The variable valve operating apparatus further includes a guide member that has a raceway surface formed so as to surround the drive camshaft. The variable valve operating apparatus further includes a link mechanism that is connected to each of the drive camshaft and the driven cam lobe and has a control roller which is in contact with the raceway surface. The variable valve operating apparatus further includes a link plate and holding rollers that maintain contact between the raceway surface and the control roller while the drive camshaft makes one rotation. The variable valve operating apparatus further includes an actuator that drives the guide member.
Abstract:
A continuous variable valve duration apparatus may vary an opening duration of a valve. The continuous variable valve duration apparatus may include a camshaft in which a camshaft slot is formed, a cam portion of which a cam and a cam slot are formed thereto and of which a rotation center is identical to a rotation center of the camshaft and the cam portion of which a phase angle to the cam shaft is variable, and a duration control portion which varies the phase angle between the camshaft slot and the cam slot.
Abstract:
A synchronous drive apparatus includes first and a second rotors. The rotors have multiple teeth for engaging engaging sections of an elongate drive structure. A rotary load assembly couples to the second rotor. The elongate drive structure engages about the rotors. The first rotor drives and the second rotor is driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly presents a periodic fluctuating load torque when driven in rotation. The angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or cancels the fluctuating load torque of the rotary load assembly.
Abstract:
In a variable valve timing mechanism, a valve-lifting cam member is fitted, slidably in the circumferential direction, onto a camshaft that is driven to rotate in synchronization with a crankshaft of a four-stroke cycle internal combustion engine. An eccentric collar is set between a driving collar fixed on the camshaft and the valve-lifting cam member. A driving projection is formed in the driving collar and engages with one of sandwiching portions of the eccentric collar. A driven protrusion is formed in the valve-lifting cam member and engages with another one of the sandwiching portions of the eccentric collar. A linkage mechanism includes the eccentric collar, the drive, and the driven protrusions. The variable valve timing mechanism adjusts the timing of opening and closing of the valve while the rotational phase of the valve-lifting cam member is cyclically varied relative to the camshaft by the eccentricity of the eccentric collar.
Abstract:
The invention provides a phase variable device for use with a car engine, capable of preventing the phase angle of the camshaft from varying relative to the first circular rotational body even if the camshaft is subjected to the reaction of a valve spring, and capable of reducing the impulsive generated in the phase variable device and delivered to the engine. MEANS FOR ACHIEVING THE OBJECTThe objects can be achieved by the inventive phase variable device which includes: a first rotational body, an intermediate rotational bode integral with the camshaft of an engine, a second rotational body, all rotatably arranged on the same camshaft, the device adapted to control phase angle of the second rotational body, thereby varying the phase angle of the intermediate rotational body. The second rotational body is placed in substantial contact with the inside of the hollow cylindrical section of the intermediate rotational body. A circular eccentric cam, integral with the second rotational body and adapted to rotate about an eccentric center thereof, causes a cam guide plate to reciprocate in the direction perpendicular to the rotational axis, which in turn causes slide members protruding from the cam guide plate to move in the radial guides formed in one of the first rotational body and the intermediate rotational body, as well as in skewed guides which are formed in the other one and skewed with respect to a circumference coaxial with the skewed guides.
Abstract:
A valve timing controller includes a driving circuit, a control circuit, and a signal line. Receiving electric power from a power source, the drive circuit drives an electric motor according to the control signal, and outputs the rotative direction signal showing the rotation direction of the electric motor. A controlling circuit outputs the control signal generated according to the rotation-direction signal. A signal line transmits the rotation-direction signal to the controlling circuit from the drive circuit. The drive circuit outputs a high-level signal showing the normal rotation direction, and a low level signal showing the reverse rotation direction of the electric motor. When a power supply voltage falls below to the acceptable value, the drive circuit maintains the voltage level of the signal line at high level.