Abstract:
An infrared sensor IC and an infrared sensor, which are extremely small and are not easily affected by electromagnetic noise and thermal fluctuation, and a manufacturing method thereof are provided. A compound semiconductor that has a small device resistance and a large electron mobility is used for a sensor (2), and then, the compound semiconductor sensor (2) and an integrated circuit (3), which processes an electrical signal output by the compound semiconductor sensor (2) and performs an operation, are arranged in a single package using hybrid formation. In this manner, an infrared sensor IC that can be operated at room temperature can be provided by a microminiature and simple package that is not conventionally produced.
Abstract:
A light source die of an optical input device is mounted on a detecting die of the optical input device in order to reduce the size of the optical input device. The light source die emits light to a reflective surface, and light sensing elements formed on the detecting die sense the reflected light from the reflective surface. A control circuit of the optical input device generates corresponding navigation signals according to the output signals of the light sensing elements.
Abstract:
A substrate 18, a cathode 20 and an anode 22 are stored in a space demarcated by a casing 10, and the space is evacuated. The cathode 20 and the anode 22 are provided on the same surface of a substrate 18 having electric insulation, and have a comb-tooth shape so as to be mutually engaged. Therefore, the area of the part in which the cathode 20 and the anode 22 approach each other becomes larger, and thereby photoelectrons discharged from the cathode 20 through the incidence of ultraviolet rays are transmitted in the vacuum, and are favorably collected in the anode 22.
Abstract:
A light source die of an optical input device is mounted on a detecting die of the optical input device in order to reduce the size of the optical input device. The light source die emits light to a reflective surface, and light sensing elements formed on the detecting die sense the reflected light from the reflective surface. A control circuit of the optical input device generates corresponding navigation signals according to the output signals of thelight sensing elements.
Abstract:
A semiconductor integrated circuit device, having a plurality of processing elements accommodated on a single semiconductor chip, has a latch circuit and a selecting circuit. The latch circuit is provided at an output of each of the processing elements. The selecting circuit selects an input source from a group consisting of upper, lower, left, and right processing elements and a zero signal.
Abstract:
The invention relates to a radiation sensor device comprising a housing, a radiation sensor secured with respect to a first portion of the housing and a heat pipe in thermal communication with the first portion of the housing, the heat pipe being configured to transfer heat from portion of the house to a second portion of the housing remote from the first portion of the housing. The heat pipe may be used advantageously to transport or transfer heat away from the sensor components of the device to an area remote therefrom. The heat pipe can be used to transfer heat at a rate that is thousands of times higher than copper. The radiation sensor device may be used in an ultraviolet radiation fluid treatment system such as an ultraviolet radiation water disinfection system.
Abstract:
A new low-cost, highly reliable and compact optical power monitor is manufactured with simplified structure and improved configurations that require only lateral position adjustment for input/output beam alignment. A compact size is achieved by employing prefabricated housing containing a highly effective focus lens placed at fixed position relative to an optical sensor, e.g., a photodiode. The prefabricated housing further function as a seal housing for direct plugging into a holding tube fitting seamlessly to a GRIN lens to focus the tapped collimated beam to the photo sensor thus greatly simplify the manufacturing processes without alignment requirements. Thermal stability and reliable performance is achieved by applying multiple-layered optical reflection-transmission coating directly onto the end surface of a GRIN lens for tapping a small portion of the collimated beam onto the focus lens and the photo sensor. The insertion loss can be conveniently minimized by laterally shifting the relative position of a dual fiber ferrule and the GRIN lens without complicate angular adjustments. A power monitor with compact size, high damage threshold, low manufacture cost and high performance stability is provided for convenient implementation in new and existing optical systems.
Abstract:
In an exemplary embodiment of the present invention, a high speed optical receiver interface includes a housing adapted to receive a distal end of a fiber having a slanted end face. The slanted end face reflects the received signal along a received optical path. The fiber cladding material along the reflected optical path may be polished or etched to reduce the thickness of the cladding to reduce the separation distance between a photodetector and the slanted end face of the fiber. The reduced separation distance also reduces the beamwidth of the reflected signal that is incident upon the photodetector. An exemplary optical receiver may therefore efficiently couple the incident optical signal onto a photodetector with a reduced active area diameter that is capable of operating at increased data rates.
Abstract:
The invention is a pneumatically actuated energy collection device. The device includes a support which has an energy collector thereon. A shutter is slidably attached to the support and can be moved between a first nullclosednull position and a second nullopennull position. In its first position, the shutter covers the collector and in its second position, the shutter uncovers the collector. The shutter is biased into one of the positions. A chamber is disposed adjacent to the shutter so that when the chamber is pressurized, the shutter bias is overcome and the shutter is moved between the first position and the second position.
Abstract:
A solar sensor comprises a housing, a pair of optical devices, an optical lens and a lens member. The optical devices are disposed in the right side and the left side on the top side of the housing, respectively, of the axis parallel to the direction of travel of a vehicle. The optical lens is disposed above the optical devices and guides incident light toward the optical devices. The lens member comprising solid projections is disposed between the optical devices and the optical lens. The top surface of the lens member is coated with a screen film except the areas under the projections. The lens member makes total quantity of solar irradiation to the optical devices constant in collaboration with the optical lens.