Abstract:
System and method for testing solar cells is provided. The system includes a first light source configured to generate a first optical beam; a second light source configured to generate a second optical beam; a reflector for each light source, configured to collimate and direct each of the first optical beam and the second optical beam; a spectral filter assembly associated with each of the first light source and the second light source, the spectral filter assembly configured to (a) receive the first optical beam and the second optical beam (b) split each of the first optical beam and the second optical beam into “N” smaller optical beams, and (c) filter the “N” smaller optical beams; a re-imaging assembly for each spectral filter assembly configured to re-image the smaller “N” optical beam at a dichroic mirror that receives one or more N beams.
Abstract:
The apparatus and methods herein provide light sources and spectral measurement systems that can improve the quality of images and the ability of users to distinguish desired features when making spectroscopy measurements by providing methods and apparatus that can improve the dynamic range of data from spectral measurement systems.
Abstract:
The apparatus and methods herein provide light sources and spectral measurement systems that can improve the quality of images and the ability of users to distinguish desired features when making spectroscopy measurements by providing methods and apparatus that can improve the dynamic range of data from spectral measurement systems.
Abstract:
Methods for generating a customized spectral profile, which can be used to generate a corresponding filter. A trial source spectrum is generated. An uncorrected lamp source spectrum is determined. One or more optical indices are calculated using the trial source spectrum or the uncorrected lamp source spectrum, and one or more of the optical indices are optimized by varying the trial source spectrum to generate the customized spectral profile.
Abstract:
An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
Abstract:
A color identifying display system having alighting surface (111, 211, 501, 611) having an alterable apparent surface color, a color capture device (105, 205, 317, 507, 603) to capture a color of an object (109, 203, 305, 503) placed within a detection area, and a processor (113). The lighting surface (111, 211, 501, 611) and the color capture device (105, 205, 317, 507, 603) are coupled to the processor (113). The processor (113) analyzes the captured color to determine a prominent color of the object (109, 203, 305, 503) and to control a color of the lighting surface (111, 211, 501, 611) based on the determined prominent color The color of the lighting surface (111, 211, 501, 611) may be adjusted to match the prominent color, complement the prominent color, or be analogous to the prominent color
Abstract:
A spectroscope designed to utilize an adaptive optical element such as a micro mirror array (MMA) and two distinct light channels and detectors. The devices can provide for real-time and near real-time scaling and normalization of signals.
Abstract:
An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
Abstract:
An imaging apparatus for obtaining spectral image data from an object that includes: a) a light source; b) an input optics section; c) a programmable spectral filter that conditions the multispectral image bearing light according to a predetermined spectral transmission function; d) a detector array in the path of the conditioned multispectral image bearing light and providing a corresponding output signal; and, e) a control logic processor in communication with the spatial light modulator for modulating addressable areas of the spatial light modulator to provide the spectral transmission function thereby.
Abstract:
Method and arrangement for changing the spectral composition and/or intensity of illumination light and/or specimen light in an adjustable manner, wherein a spatial separation into radiation components of different polarization is carried out with a first polarizing device, a spectral, spatial splitting of at least one radiation component is carried out with first dispersion device, the polarization state of at least one part of the spectrally spatially split radiation component is changed, and a spatial separation and/or combination of radiation components of different polarization are/is carried out by a second polarizing device, wherein a spatial combination of radiation components which are changed and not changed with respect to their polarization state is advantageously carried out by a second dispersion device.