Abstract:
A method for making a substrate for a mirror used in photolithography is described. That method comprises forming a crystalline layer on a first layer, which has a low coefficient of thermal expansion. Part of the crystalline layer is then removed to form on the first layer a second layer that has a high quality surface finish.
Abstract:
An extreme ultraviolet lithography mask may be formed of a multilayered stack covered by a spacer layer, such as silicon or boron carbide, in turn covered by a thin layer to prevent inter-diffusion, and finally covered by a capping layer of ruthenium. By optimizing the spacer layer thickness based on the capping layer, the optical properties may be improved.
Abstract:
In order to reduce contamination of optical elements which comprise a multilayer system on a substrate, it is proposed that the layer material and/or the layer thickness of at least one layer of the multilayer system are/is selected such that the standing wave which forms during reflection of the irradiated operating wavelength, forms a node of the electrical field intensity (node condition) in the area of the free interface of the multilayer system. Furthermore, a method for determining a design of a multilayer system, as well as a manufacturing process and a lithography apparatus are described.
Abstract:
A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.
Abstract:
A process for forming glass or glass ceramics is disclosed, wherein a glass ceramics form (12) is made from a starting glass by molding, which is transformed by a heat treatment into a keatite glass ceramic comprising predominantly keatite mixed crystals. With such a keatite glass ceramics form (12) formed bodies can be prepared from blank parts by sagging under gravity force at a temperature above the glass transition temperature of the blank part (14).
Abstract:
The invention makes possible to increase the degree of radiation focusing by the lens, to use particles of higher energies, and to increase the coefficients, depending on these factors, of the devices, the lens is used in. Thus the sublens 18 of the least degree of integration represents a package of the channels 5, which is growing out of joint drawing and forming the capillaries, which are laid in a bundle. The sublens of each higher degree of integration represents a package of sublenses of the previous degree of integration, which is growing out of their joint drawing and forming. The sublenses are growing out of performing the said operations at the pressure of the gaseous medium inside the channels being higher than the pressure in the space between the sublenses of the previous degree of integration and at the temperature of their material softening and splicing the walls. To produce the lenses a bundle of stocks (capillaries) in a tubular envelope is fed to the furnace (at the first stage) or stocks, produced on the previous degree, and the bundle is drawing from the furnace at the speed, exceeding the speed of feeding. The product is cut off on stocks for the next stage, and at the final stage the product is formed by varying the drawing speed, after what the parts with formed barrel-shaped thickenings are cut of.
Abstract:
A surface treating method of forming a coating layer on a base material, comprising conducting a plasma processing under an atmospheric pressure for the base material so as to form a coating layer on the base material having at least one of a curved surface and an uneven surface.
Abstract:
A reflective lens with at least one curved surface formed of polycrystalline material. In one embodiment, a lens structure includes a substrate having a surface of predetermined curvature and a film formed along a surface of the substrate with multiple individual members each having at least one similar orientation relative to the portion of the substrate surface adjacent the member such that collectively the members provide predictable angles for diffraction of x-rays generated from a common source. A system is also provided for performing an operation with x-rays. In one embodiment, a system includes a source for generating the x-rays, a polycrystalline surface region having crystal spacing suitable for reflecting a plurality of x-rays at the same Bragg angle along the region, and transmitting the reflected x-rays to a reference position. An associated method includes providing x-rays to polycrystalline surface region having crystal spacings suitable for reflecting a plurality of x-rays at the same Bragg angle along the region, transmitting the reflected x-rays to a reference position and positioning a sample between the surface region and the reference position so that the x-rays are transmitted through the sample.
Abstract:
Methods are disclosed for correcting the wave aberrations of light reflected from multilayer-film mirrors as used in, e.g., optical systems as used for EUV lithography (EUVL) apparatus. Wave aberrations are corrected by addition and/or removal of one or more layers (typically layer-sets) to and from, respectively, the surface of the multilayer film of the mirror. In certain embodiments, layer-removal is monitored in situ by any of several techniques. In other embodiments, mirror substrates are processed to a prescribed shape precision and surface roughness, followed by formation of the multilayer film and assembly of the mirrors into the intended optical assembly. The wave aberration is measured at operating wavelength. If the measured wave aberration is not within specifications, then the mirrors are corrected individually by selective removal and/or addition of layer-set(s). The corrected mirrors are reassembled and re-tested as an optical assembly. This cycle is repeated as required. In other embodiments, the mirrors are corrected by removing layer-sets in layer-set increments, followed by re-formation, at less than normal layer thickness, of the layer of the material having the most impact on defining the reflection wave-front, until the desired layer thickness is achieved. In yet other embodiments, layer(s) are removed such that the resulting corrected reflection wave-front is smooth.
Abstract:
An electromagnetic reflector having a multilayer structure where the electromagnetic reflector is configured to reflect multiple electromagnetic frequencies.