Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
Abstract:
The invention relates to an electron beam exposure apparatus for transferring a pattern onto the surface of a target, comprising: a beamlet generator for generating a plurality of electron beamlets; a modulation array for receiving said plurality of electron beamlets, comprising a plurality of modulators for modulating the intensity of an electron beamlet; a controller, connected to the modulation array for individually controlling the modulators, an adjustor, operationally connected to each modulator, for individually adjusting the control signal of each modulator; a focusing electron optical system comprising an array of electrostatic lenses wherein each lens focuses a corresponding individual beamlet, which is transmitted by said modulation array, to a cross section smaller than 300 nm, and a target holder for holding a target with its exposure surface onto which the pattern is to be transferred in the first focal plane of the focusing electron optical system.
Abstract:
The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
Abstract:
An electron emission device having various functional electrodes in addition to the electrodes serving to emit electrons includes: first and second substrates facing each other, and cathode and gate electrodes arranged on the first substrate within an effective electron emission area and including an insulating layer interposed therebetween. The electron emission regions are electrically connected to the cathode electrodes. At least one dummy electrode is arranged external to the effective electron emission area. At least one anode electrode is arranged on the second substrate. Phosphor layers are arranged on one surface of the anode electrode.
Abstract:
An electron gun includes the following: a primary thermionic electron source, a secondary thermionic electron source and a focusing electrode disposed within a first housing that includes one or more reference members adjustably attached to a housing support connected to a first platform; an anode and one or more focusing coils disposed within a second housing comprising one or more insulating members adjustably connected to the first platform; and one or more deflection coils disposed within a third housing connected to the second housing and located opposite said first housing.
Abstract:
The invention relates to an electron beam exposure apparatus for transferring a pattern onto the surface of a target, comprising: a beamlet generator for generating a plurality of electron beamlets; a modulation array for receiving said plurality of electron beamlets, comprising a plurality of modulators for modulating the intensity of an electron beamlet; a controller, connected to the modulation array for individually controlling the modulators, an adjustor, operationally connected to each modulator, for individually adjusting the control signal of each modulator; a focusing electron optical system comprising an array of electrostatic lenses wherein each lens focuses a corresponding individual beamlet, which is transmitted by said modulation array, to a cross section smaller than 300 nm, and a target holder for holding a target with its exposure surface onto which the pattern is to be transferred in the first focal plane of the focusing electron optical system.
Abstract:
The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
Abstract:
An electron gun according to this invention includes a cathode having a hemispherical electron-emitting surface, an anode which is arranged to face the cathode, and has a first aperture on the optical axis, and a bias electrode which is arranged between the anode and the cathode, receives a potential lower than one applied to the cathode, and has a second aperture larger than the electron-emitting surface of the cathode on the optical axis. The distal end of the electron-emitting surface of the cathode is arranged in contact with or outside a sphere whose diameter is equal to the diameter of the second aperture of the bias electrode.
Abstract:
A radio frequency (RF) modulated electron gun includes a cathode, electrically coupled to operate as a source of charged particles, and a grid, positioned apart from the cathode. The grid and the cathode are electrically coupled to a grid voltage source and to a RF source. The grid voltage source places the grid at a first potential, and the RF source places the grid at a second potential selected to produce groups of the charged particles. The groups of charged particles are produced with each period of a signal received from the RF source.
Abstract:
A radiation therapy device (2) includes a programmable power source (300) and controller (302) that monitor an injected current level and controls heater voltage in response thereto. The heater voltage is reduced in predetermined increments without affecting the beam profile.