Abstract:
A hollow cathode lamp is described with an end cap, an anode, and a cathode. A data storage device is part of the end cap and communicates data to and from a computing device. The data communicated with the computing device may include identification information and usage information corresponding to the hollow cathode lamp. Additionally, a method is described that includes activating a power supply to a hollow cathode lamp and communicating data with a memory device located in the hollow cathode lamp. The data communicated with the memory device includes usage information about an amount of time the hollow cathode lamp has been in use.
Abstract:
An electrode (1) for cold cathode tube has a cylindrical sidewall portion (2), a bottom portion (3) provided at one end of the sidewall portion, and an opening portion (4) provided at the other end of the sidewall portion. The sidewall portion and the bottom portion are made of tungsten. The tungsten has fibrous crystalline structure extending substantially perpendicularly to a direction of thickness of the sidewall portion or the bottom portion. The thickness T of the sidewall portion or the bottom portion and an average width W of the fibrous crystalline structures in the direction of the thickness satisfy the following relational expression: 0.003≦W/T≦0.07.
Abstract translation:用于冷阴极管的电极(1)具有圆筒形侧壁部分(2),设置在侧壁部分一端的底部部分(3)和设置在侧壁部分另一端的开口部分(4)。 侧壁部分和底部部分由钨制成。 钨具有基本上垂直于侧壁部分或底部的厚度方向延伸的纤维结晶结构。 侧壁部分或底部的厚度T和纤维状晶体结构在厚度方向上的平均宽度W满足以下关系式:0.003≦̸ W / T≦̸ 0.07。
Abstract:
A cold cathode fluorescent lamp includes a tube having an inner surface coated with a fluorescent film and tubular discharge electrodes disposed at both inner ends of the tube. Each discharge electrode has an opening facing a discharge area and includes a projection in the opening, the area of the projection being reduced by electric discharge.
Abstract:
A fluorescent tube 30 of the present invention includes a glass tube 31 and electrodes 32 opposed to each other on both end portions 31a of the glass tube 31, characterized in that the electrode 32 has a closed-end hollow shape opened on the opposite side from the end portion 31a of the glass tube 31, and the electrode 32 constituting the closed-end hollow shape has an inner surface 35 configured to be tapered toward the end portion 31a of the glass tube 31. With this configuration, it is possible to contain accelerated electrons not only in the bottom face 33 of the electrode 32 but also in the inner surface 35 of the electrode 32, thereby suppressing sputtering. Consequently, it is possible to increase the life of the fluorescent tube 30.
Abstract:
This cold cathode tube lamp comprises a glass tube (11) into which at least a rare gas is filled and a discharge tube composed of a pair of an electrode (21) and an electrode (22) disposed facing each other at both ends inside the glass tube (11). In the respective electrode (21) and electrode (22), lead terminals (31a, 31b, 31c) and lead terminals (32a, 32b, 32c), one end of each of which is connected to the electrode and the other end of each of which is led out to the outside of the glass tube (11) are provided.
Abstract:
Roll to roll fabrication methods of the invention enable low cost mass production of microdischarge devices and arrays. A preferred embodiment method of fabricating a discharge device includes providing a dielectric layer sheet, a first electrode, and a second electrode sheet. A cavity is provided through at least a portion of the dielectric layer sheet. At least the dielectric layer sheet and second electrode sheet are rolled together. Another preferred embodiment method of fabrication a discharge device includes method of fabricating a discharge device includes providing a dielectric layer sheet and a cavity through at least a portion of the dielectric layer sheet. A first electrode is disposed as a film of conducting material on the dielectric layer sheet around a rim of the cavity. A second electrode sheet is provided. The dielectric layer sheet is rolled together with first electrode and second electrode sheets.
Abstract:
There are provided electrode components (1) comprising an open ended tube and a plug and electrodes and electrical apparatus comprising the same. Also provided are methods of forming electrode components.
Abstract:
A cold cathode fluorescent lamp is disclosed. The cold cathode fluorescent lamp includes a sealed glass tube provided with a fluorescent layer on an inner surface thereof, inner electrodes provided in opposite ends of the glass tube, and outer electrodes to apply an electric field to the inner electrodes. Each of the inner electrodes includes a first electrode formed in a cup shape and a second electrode provided inside the first electrode and formed in a coil shape.
Abstract:
Cylindrical electrodes (7) are arranged opposite to each other in an internal space (5) of a hermetically sealed glass tube (2) which is filled with a rare gas and a mercury gas. The cylindrical electrodes (7) is mainly composed of nickel (Ni), and one or both of yttrium (Y) and yttrium oxide (YOx) are dispersed in the cylindrical electrodes (7).
Abstract:
A cold cathode fluorescent lamp (1) has feedthrough pins (5) made from molybdenum or a molybdenum alloy that form a glass-metal seal (6) with a glass composed of 55-75 wt. % SiO2, 13-25 wt. % B2O3, 0-10 wt. % Al2O3, 5-12 wt. % alkali oxides, 0-3 wt. % alkali earth oxides, 0-5 wt. % ZrO2, 0-10 wt. % TiO2 und 0-5 wt. % remaining oxides. The lamp has hollow cathodes (4) made from a material of the group molybdenum, molybdenum alloys, niobium, niobium alloys, and the lamp is manufactured in a compact form using conventional manufacturing parameters, and the resulting lamp has crack free, long-term vacuum-tight glass-metal seals.