Abstract:
A signal transmitting device with vias and solder balls comprises: at least one main structure(s), a second substrate, a third substrate, at least one via(s), at least one conductive layer(s), at least one solder pad(s) and at least one solder ball(s). The main structure comprises at least one first substrate having a first surface and a second surface, wherein the first surface has a first circuit layer disposed thereon and the second surface has a second circuit layer disposed thereon. The second substrate is disposed on the first circuit layer and the third substrate is disposed on the second circuit layer. The via passes through the second substrate, the main structure and the third substrate sequentially. The conductive layer is disposed on the rim of the via and also the second substrate and the third substrate so that a parameter representing the width of covered area on the second substrate and the third substrate is properly equal to d. The solder pad is disposed on the second substrate and is connected to the conductive layer and, the solder ball is disposed on the solder pad. An aperture corresponding to the via is formed on the first circuit layer and the second circuit layer, and a slot is arranged corresponding to the solder ball.
Abstract:
An apparatus for providing a controlled impedance directly to predetermined contact elements within a socket, thereby reducing the “distorting” nature of the electrical interconnection system. In an illustrative embodiment of the present invention, predetermined contacts of a socket may have a resistance, inductance, capacitance, or a combination thereof incorporated therein. In another illustrative embodiment, at least one active element(s) may also be incorporated into predefined contacts. In this manner, predefined contacts may “process” the corresponding signal in a predetermined manner, defined by the circuitry incorporated on the contact itself. Illustrative functions that may be performed include, but are not limited to, amplifying, analog-to-digital converting, digital-to-analog converting, predefined logic functions, or any other function that may be performed via a combination of active and/or passive elements including a microprocessor function.
Abstract:
A method (and structure) of making an electronic interconnection, includes, for a signal line to be interconnected, using a plurality of bonding wires configured to provide a controlled impedance effect.
Abstract:
A structure and a method of a substrate with built-in via hole resistors are disclosed. The substrate structure includes a core layer made of insulating material and a plurality of via holes for filling with polymer thick film resistor. After the via holes are filled with PTFR, a solder ball or a pad is formed on both ends of the via hole to provide electrical conductivity.
Abstract:
A technique to simultaneously reduce high-frequency insertion loss and cross-talk for a multi-layered add-in card is disclosed. The technique is based on selective removal of ground and power planes beneath the edge fingers. This selective removal of power and ground planes removes excess capacitance at the edge fingers, lowering the insertion loss at high frequencies, while maintaining an impedance match with an associated connector. Simultaneously, the leftover metallic ground/power plane provides electromagnetic shielding and thus reduces the cross-talk between the differential pairs. Optimum performance of the connector with minimized insertion loss and cross-talk can be obtained for high-speed analog and digital applications.
Abstract:
An interconnect structure has a plurality of planar interconnects (1, 2) mutually superposed with a prescribed distance therebetween and serving as interconnects between two circuit boards (A, B), each of the planar interconnects (1, 2) having at least two connection terminals (1A, 1B, 2A, 2B) at the circuit boards (1, 2). Rather than using rigid wire interconnects as done in the past to make interconnections, planar interconnects having relatively large surface areas are used to increase the line-to-line capacitance, thereby enhancing the filtering function that reduces high-frequency noise.
Abstract:
To significantly reduce parasitic capacitance of component's landing pad, the present invention forms patterned holes in reference potential layers below the pad, thus effectively increasing the dielectric distance between the pad and the reference potential planes below the pad, raising the characteristic impedance of the pad above that of the trace connected to the pad. A controlled amount of parasitic capacitance is re-introduced to the pad by forming at least one grounded metal plate adjacent to the pad, bringing the characteristic impedance of the pad to substantially match that of the trace. The distance of the metal plates from the pad, and the configuration of the patterned holes are predetermined to substantially match the pad's impedance with that of the trace.
Abstract:
A low-inductance connection between a first component and a second component on a first surface of a first printed-circuit board includes a second conducting path in electrical communication with a first conducting path that connects the first and second components. The second conducting path is disposed on a surface separated from the first surface of the first printed-circuit board and separated from the first printed-circuit board by an insulating layer. An electrical connector extends between the first conducting path and the second conducting path and provides electrical communication between them. The first and second conducting paths thus cooperate to provide an electrical connection having a parasitic inductance that is smaller than the parasitic inductance of the first conducting path.
Abstract:
A ball grid array packaging structure for sealing a silicon chip on a substrate is disclosed. The substrate includes a front wiring layer and a back wiring layer. The front wiring layer includes a plurality of inner power rings and an outer power ring. The inner power rings are attached and together they surround a central region where the silicon chip is attached. The inner power rings and the outer power ring have a substantially identical width and the outer power ring surrounds all the inner power rings. The back wiring layer has a large number of interface power balls and core power balls. The interface power balls may be further subdivided into groups of inner power balls, while each group of inner power balls corresponds and couples with one of the inner power rings of the front wiring layer. The core power balls connect with the outer power ring and surround the interface power balls.
Abstract:
An interconnect structure has a plurality of planar interconnects (1, 2) mutually superposed with a prescribed distance therebetween and serving as interconnects between two circuit boards (A, B), each of the planar interconnects (1, 2) having at least two connection terminals (1A, 1B, 2A, 2B) at the circuit boards (1, 2). Rather than using rigid wire interconnects as done in the past to make interconnections, planar interconnects having relatively large surface areas are used to increase the line-to-line capacitance, thereby enhancing the filtering function that reduces high-frequency noise.