Abstract:
Disclosed is a noise shield type multi-layered substrate which is advantageous in terms of shielding leaked magnetic flux and cross-talk by disposing a magnetic material onto at least one of circuit patterns, passive components and active components, thus blocking noise generated from the circuit patterns, passive components and active components. Thus, malfunctions of neighboring circuit patterns and various parts due to leaked magnetic flux are prevented. A method of manufacturing the noise shield type multi-layered substrate is also provided.
Abstract:
An electromagnetic noise suppressor of the present invention has magnetic resonance frequency of 8 GHz or higher, and the imaginary part μ″H of complex magnetic permeability at 8 GHz is higher than the imaginary part μ″L of complex magnetic permeability at 5 GHz. Such an electromagnetic noise suppressor is capable of achieving sufficient electromagnetic noise suppressing effect over the entire sub-microwave band. The electromagnetic noise suppressor can be manufactured by forming a composite layer 3 on the surface of a binding agent 2 through physical deposition of a magnetic material on the binding agent 2. The structure with an electromagnetic noise suppressing function of the present invention is a printed wiring board, a semiconductor integrated circuit or the like that is covered with the electromagnetic noise suppressor on at least a part of the surface of the structure.
Abstract translation:本发明的电磁噪声抑制器的磁共振频率为8GHz以上,8GHz的复磁导率的虚数μ“H”高于虚数μ“ 5GHz处的复磁导率的SUB> L sub>。 这样的电磁噪声抑制器能够在整个子微波带上实现足够的电磁噪声抑制效果。 可以通过在粘合剂2上物理沉积磁性材料,在粘合剂2的表面上形成复合层3来制造电磁噪声抑制器。 本发明的具有电磁噪声抑制功能的结构是在该结构体的至少一部分表面被电磁噪声抑制器覆盖的印刷电路板,半导体集成电路等。
Abstract:
A multilayer structure in which all the magnetic elements have the windings edged in the inner layers and the magnetic core which surrounds the winding has the legs penetrating through the multilayer structure. The interconnection between the magnetic elements and the rest of electronic components is done through the layers of the multilayer board, horizontally and vertically through via. For higher power components special cuts are performed in the multilayer board to accommodate the body of the components which may be connected to an external heatsink. The winding arrangement in the transformer is done in a such way to minimize and even eliminate the common mode noise injected through the capacitance between primary and secondary winding. The input filter is constructed to exhibit a differential and a common mode impedance. Supplementary capacitors are incorporated in the multilayers structure to offer a low impedance to the noise to short it to the source, or for injecting currents of opposite polarity to cancel the common mode current transferred through the transformer's inter winding capacitance and through the parasitic capacitance of the switching elements to the secondary. The insulation between winding can be in accordance with the safety agency requirements, allowing much shorter creapage distances inside of the multilayer PCB structure than in the air due to the compliance with coating environment.
Abstract:
A composite dielectric material comprising a resin resulting from a polyvinylbenzyl ether compound and a dielectric, ceramic powder dispersed therein is useful in the high-frequency region. A composite magnetic material comprising a polyvinylbenzyl ether compound and a magnetic powder is also provided as well as a flame retardant material comprising a polyvinylbenzyl ether compound and a flame retardant. These materials may be used in the fabrication of substrates, prepreg sheets, coated metal foils, molded items, and metal foil-clad substrates.
Abstract:
A composite dielectric material comprising a resin resulting from a polyvinylbenzyl ether compound and a dielectric ceramic powder dispersed therein is useful in the high-frequency region. A composite magnetic material comprising a polyvinylbenzyl ether compound and a magnetic powder is also provided as well as a flame retardant material comprising a polyvinylbenzyl ether compound and a flame retardant. These materials may be used in the fabrication of substrates, prepreg sheets, coated metal foils, molded items, and metal foil-clad substrates.
Abstract:
A module incorporating a capacitor, the module including a circuit board and a layer incorporating a capacitor, wherein the circuit board includes a wiring layer and a via contact for providing electrical conductivity to a cathode and an anode of the capacitor. The layer incorporating the capacitor includes a ferromagnetic layer integrated with at least a portion of a surface of the capacitor, and in the circuit board or the layer incorporating the capacitor, a coil is wound around the capacitor, or an inductor component is disposed in parallel with the capacitor. Accordingly, a module incorporating a capacitor in which miniaturization, a higher density and a reduced thickness have been achieved, as well as a method for producing the module and a capacitor used for the module, are provided.
Abstract:
A switching power supply device of the invention includes: a switching circuit for interrupting direct current to generate a pulse voltage; a transformer including a primary winding, a secondary winding, and a core for magnetically coupling the primary winding and the secondary winding; a multi-layer wiring board having wiring lines constituting the primary winding and the secondary winding; a rectifier circuit for rectifying an alternating current; a smoothing circuit for suppressing ripple; and a control circuit for controlling an output voltage from the smoothing circuit. The multi-layer wiring board is provided with at least the switching circuit and the rectifier circuit and is arranged on a main wiring board, and the control circuit is arranged on the main wiring board.
Abstract:
A packaging system for a high current, low voltage power supply. The power supply uses bare die power FETs which are directly mounted to a thermally conductive substrate by a solder attachment made to the drain electrode metallization on the back side of the FETs. The source electrode and gate electrode of each FET are coupled to the circuitry on an overhanging printed circuit board, using CSP solder balls affixed to the front side of the FET die. The heat generated by the FETs is effectively dissipated by the close coupling of the FETs to the thermally conductive underlying substrate. High interconnect densities are achieved through the use of a multilayer printed circuit board. This high interconnect density, with the addition of a magnetic core element, allows the power supply packaging system to incorporate transformer windings for an isolation transformer or an inductor.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A ceramic laminated board is provided which has thermal via holes penetrating the inside from the main face of the board. In the thermal via hole, a heat transfer body is placed which has a metallic body and a composite material provided entirely orpartiallybetween themetallicbody and the ceramic laminated board. The composite material is higher in thermal conductivity than air and is lower in thermal expansion coefficient than the metallic body.