Abstract:
An apparatus having a variable angle light source characterized by a pivot point, a variable response optical receiver, and a first optical system is disclosed. The variable response optical receiver receives light generated by the light source on a receiving surface, the receiver generating a signal indicative of an intensity of light that impinges on a receiving surface. The first optical system images the pivot point to a fixed point relative to the receiver surface. In one aspect of the invention the first optical system is chosen such that light from the variable angle light source covers more& than half the receiving surface. The variable angle light source can include a gain chip in a semiconductor laser having a pivot point located substantially on a facet of the gain chip.
Abstract:
A selectable view angle optical sensor is disclosed. The selectable view angle optical sensor comprises a substrate, a photodiode array disposed on the substrate, a first optical shielding modulation layer disposed on a first plane and a second optical shielding modulation layer disposed on a second plane. The first plane is on the photodiode array, the second plane is on the first plane, and the first and second planes and a top surface of the photodiode array are substantially in parallel. The dimensions and configurations of the first and second optical shielding modulation layers limit a field of view of the photodiode array so that the photodiode array has selectable view angle function.
Abstract:
An optical sensor includes: first and second light receiving elements on a semiconductor substrate; a light blocking film over the semiconductor substrate via a light transmitting film; and first and second openings corresponding to the light receiving elements and disposed in the light blocking film. First and second virtual lines are defined to extend from the centers of the first and second light receiving elements and pass through the centers of the first and second openings, respectively. At least one of elevation angles and left-right angles of the first and second virtual lines are different. The photosensitive area of the first light receiving element is larger than the aperture area of the first opening. The photosensitive area of the second light receiving element is larger than the aperture area of the second opening.
Abstract:
This invention discloses a printing quality inspection apparatus including a light irradiation device, an image capture device, a diffusely reflecting plate, and a determination device. When a member to be printed is a first sheet member, light emitted by the light irradiation device is diffusely reflected by the first sheet member and enters the image capture device. When the member to be printed is a second sheet member, the light emitted by the light irradiation device is diffusely reflected by the diffusely reflecting plate, is specularly reflected by the second sheet member, and enters the image capture device.
Abstract:
An apparatus and method for measuring the aim of vehicle headlamps including measuring the light intensity of a light beam emitted by a vehicle headlamp to check the aim of the vehicle headlamp. The apparatus includes a linear photosensitive array having a plurality of individual photo sensors positioned between a plurality of baffles. The array is movably mounted to a frame whereby it can be positioned at predetermined locations to measure light beam intensity and correspondingly determine the beam pattern and aim point of a headlamp.
Abstract:
A solar radiation detector comprises a shading element that casts a shadow over one of a number of sensors disposed about the shading element. The shading element and the sensors are spaced in relation to each other that the shadow cast by the shading element always falls on one of the sensors, completely shading that one sensor, while at the same time leaves at least another one of the sensor completely exposed to direct solar radiation. The completely shaded sensor measures substantially only diffuse solar radiation.
Abstract:
A monitoring device includes a first aperture plate, a second aperture plate, and a photodiode. The first aperture is disposed in a light path of a light beam emitted by a light source and includes a first aperture arranged such that a portion of the light beam having maximum light intensity passes and a reflecting portion that reflects the light beam as a monitoring light beam. The second aperture plate is disposed in a light path of the monitoring light beam and includes a second aperture that shapes a beam diameter of the monitoring light beam. The photodiode receives the monitoring light beam.
Abstract:
A sensor and detection system is included. The sensor includes at least one transmitter which has associated optical elements for emitting at least one light beam toward the object to be detected. At least one receiver is positioned adjacent the transmitter for receiving light reflected from an edge of the object. The receiver generates a signal responsive to the reflected light. The associated optical elements of the transmitter include a converging lens for emitting a focused light beam in one plane, and a cylindrical lens for emitting a diverging light beam in another plane, such that a portion of the reflected light is diverging and is received by the receiver over a wide angle of coverage.
Abstract:
Method and apparatus are provided for visibly outlining the energy zone to be measured by a radiometer. The method comprises the steps of providing a laser sighting device on the radiometer adapted to emit more than two laser beams against a surface whose temperature is to be measured and positioning said laser beams about the energy zone to outline said energy zone. The apparatus comprises a laser sighting device adapted to emit more than two laser beams against the surface and means to position said laser beams about the energy zone to outline said energy zone. The laser beams may be rotated about the periphery of the energy zone. In another embodiment, a pair of laser beams are projected on opposite sides of the energy zone. The laser beams may be further pulsed on and off in a synchronised manner so as to cause a series of intermittent lines to outline the energy zone. Such an embodiment improves the efficiency of the laser and results in brighter laser beams being projected. In yet another embodiment, a primary laser beam is passed through or over a beam splitter or a diffraction grating so as to be formed into a plurality of secondary beams which form, where they strike the target, a pattern which defines an energy zone area of the target to be investigated with the radiometer. Two or more embodiments may be used together. A diffraction device such as a grating may be used to form multiple beams. In a further embodiment, additionally laser beams are directed axially so as to illuminate the center or a central area, of the energy zone.
Abstract:
A diffused light reflectance readhead is disclosed. The readhead employs an improved light emitting diode (LED) providing a more strongly collimated beam of fight around a beam axis onto a reagent test pad. The reagent test pad is supported on a strip guide at an angle .alpha. of 5 degrees with respect to the perpendicular of the beam axis. It has been discovered that when .alpha. is between 3 and 8 degrees that specular reflection is dramatically reduced in relation to the small reduction in reflected light received by a sensor. The diffuse reflected light travels to the sensor by passing through a staircase optical baffle at an angle of 45 degrees to the perpendicular of the beam axis. The sensor converts the optical signal into an electrical one for processing and analysis. One embodiment of the present invention can detect the presence of glucose in a blood sample.