Abstract:
A sensor wafer may be configured for in-situ measurements of parameters during an etch process. The sensor wafer may include a substrate, a cover, and one or more components positioned between the substrate and the cover. An etch-resistant coating is formed on one or more surfaces of the cover and/or substrate. The coating is configured to resist etch processes that etch the cover and/or substrate for a longer period than standard thin film materials of the same or greater thickness than the protective coating.
Abstract:
We disclose a method of tagging nutritional or drug compositions using chemical entities which are known to be safely consumed and which are detectable using known techniques, including near IR spectroscopy. The chemical entities used as tags may be detected in easily obtainable biological samples, including urine and feces. The biological sample may be deposited into a medical toilet which may analyze the biological sample using an analytical device associated with the medical toilet. The tag may be identified and quantified to then identify and quantify the nutritional or drug composition the subject consumed along with the tag. This system may be used to track the source of a food or drug, confirm compliance to a prescribed diet or drug treatment, confirm drug consumption in clinical trials, identify the source of contaminated food, and identify the food substances used to produce food products.
Abstract:
The bidet system may include multiple seat scales which may float between the toilet bowl rim and the toilet seat. These seat scales may collect measurements which are transmitted to a controller. The controller may include instructions to calculate a user's center of mass based on the measurements and to identify the position of the user's anus based on the center of mass. The controller may then transmit instructions to a bidet wand directing direct the bidet wand to a position which aims a cleansing fluid spray toward the user's anus. A camera which collects images of the user's anal and urogenital region may also be included in the bidet system. The camera may transmit obfuscated images to the controller to identify other areas of the user's anatomy in need of cleansing. The controller may direct the bidet wand to aim a cleansing fluid spray toward these areas.
Abstract:
We disclose a method of using taggants to assess how and to what extent a drug in a drug composition that a user has consumed has decayed in response to storage conditions and time. The taggants may decay in response to environmental conditions which cause different drugs to lose their efficacy. These environmental conditions may include light, temperature, oxidation, moisture, and age. The taggants may be detected in biological samples, including urine and feces. By identifying the taggants, the drug composition and other information relating to the drug may be identified. Additionally, quantification of the different taggants may be used to determine whether the drug in the drug composition has been exposed to environmental conditions which may reduce its efficacy.
Abstract:
We disclose an in-toilet urinalysis system which includes a system for collection urine and for analysis of urine components using aptamer technology. Urine collection system may dispense urine into cuvettes, channels, or other containers that include aptamers. The aptamers may detect target molecules in urine. The aptamers may measure urine analytes, detect excreted drugs or drug metabolites, or disease markers. Upon binding to the target molecule, the aptamers may produce a signal which a sensor in the toilet may detect. In some embodiments, the signal may be electrochemical, fluorescent, or colorimetric. The measurements obtained from analysis of the urine may be used to assess a user's health or diagnose disease. In some embodiments, the measurements are stored in a controller which may transmit the measurements to a healthcare provider for assessment.
Abstract:
We disclose a method of tagging nutritional or drug compositions using chemical entities which are known to be safely consumed and which are detectable using known techniques, including near IR spectroscopy. The chemical entities used as tags may be detected in easily obtainable biological samples, including urine and feces. The biological sample may be deposited into a medical toilet which may analyze the biological sample using an analytical device associated with the medical toilet. The tag may be identified and quantified to then identify and quantify the nutritional or drug composition the subject consumed along with the tag. This system may be used to track the source of a food or drug, confirm compliance to a prescribed diet or drug treatment, confirm drug consumption in clinical trials, identify the source of contaminated food, and identify the food substances used to produce food products.
Abstract:
My invention is an apparatus to cause the computer monitor or screen to slowly and automatically move either laterally toward and away from the user or upward and downward in relation to the user, so as to reduce eye strain.
Abstract:
Temperature measurement of a silicon wafer is described using the interference between reflections off surfaces of the wafer. In one example, the invention includes a silicon processing chamber, a wafer holder within the chamber to hold a silicon substrate for processing, and a laser directed to a surface of the substrate. A photodetector receives light from the laser that is reflected off the surface directly and through the substrate and a processor determines a temperature of the silicon substrate based on the received reflected light.
Abstract:
Methods for processing substrates in twin chamber processing systems having first and second process chambers and shared processing resources are provided herein. In some embodiments, a method may include providing a substrate to the first process chamber of the twin chamber processing system, wherein the first process chamber has a first processing volume that is independent from a second processing volume of the second process chamber; providing one or more processing resources from the shared processing resources to only the first processing volume of the first process chamber; and performing a process on the substrate in the first process chamber.
Abstract:
Methods and apparatus for calibrating a plurality of gas flows in a substrate processing system are provided herein. In some embodiments, a substrate processing system may include a cluster tool comprising a first process chamber and a second process chamber coupled to a central vacuum transfer chamber; a first flow controller to provide a process gas to the first process chamber; a second flow controller to provide the process gas to the second process chamber; a mass flow verifier to verify a flow rate from each of the first and second flow controllers; a first conduit to selectively couple the first flow controller to the mass flow verifier; and a second conduit to selectively couple the second flow controller to the mass flow verifier.