Abstract:
The present invention relates to a hydroprocessing catalyst comprising: (i) one or more hydrogenation metal components selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal; and (ii) an organic compound expressed by the following chemical formula 1 or an organometallic compound expressed by the following chemical formula 2. Chemical formula 1: R1COCH2COR2 (wherein, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy). Chemical formula 2: X(R1COCH1COR2)n (wherein, X is selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy, and n is an integer of 1 to 6).
Abstract:
A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.
Abstract:
A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.
Abstract:
A catalyst composition comprises the reaction product of an alkoxide or condensed alkoxide of a metal M, selected from titanium, zirconium, hafnium, aluminum, or a lanthanide, an alcohol containing at least two hydroxyl groups, a 2-hydroxy carboxylic acid and a base, wherein the ratio of equivalents of base to —COOH acid equivalents of said 2-hydroxy carboxylic acid is in the range 0.0033-0.2:1. The composition is useful as a catalyst for esterification reactions, especially for the production of polyesters such as polyethylene terephthalate, polytrimethylene terephthalate and polybutylene terephthalate.
Abstract:
Catalyst component comprising Mg, Ti, Hf, a halogen and, optionally, —OR groups where R is a C1-C20 hydrocarbon group, characterized in that (a) the Mg atoms are present in an amount higher than 7% based on the total weight of the said catalyst component, (b) the amount of Mg, Ti, and Hf atoms is such that the Mg/Ti molar ratio ranges from 3 to 25 and the Hf/Ti molar ratio is lower than 1.5 and (c) when —OR groups are present their amount is such that the —OR/Ti molar ratio is lower than 2.
Abstract:
Disclosed is a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde in high productivity. Also disclosed are a method for producing such a catalyst, and a method for producing an α, β-unsaturated carboxylic acid in high productivity. Specifically, a palladium-containing catalyst is produced by a method containing a step in which palladium in an oxidation state is reduced by a compound (A) which is represented by the following formula (1).
Abstract:
The present disclosure provides a Ziegler-Natta catalyst composition comprising a procatalyst, a cocatalyst and a mixed external electron donor comprising a first selectivity control agent, a second selectivity control agent, and an activity limiting agent. A polymerization process incorporating the present catalyst composition produces a high-stiffness propylene-based polymer with a melt flow rate greater than about 50 g/10 min. The polymerization process occurs in a single reactor, utilizing standard hydrogen concentration with no visbreaking.
Abstract:
The present invention provides a catalyst composition for preparing an amide, including an amino acid ionic liquid having a cation of formula (I) and an anion selected from the group consisting of an inorganic acid group, an organic acid group and a combination thereof, wherein the numbers of the anion and the cation are such that the amino acid ionic liquid is electroneutral; and a Bronsted acid. The present invention also provides a method for preparing an amide in the presence of the catalyst composition, and the method has advantages such as decreasing viscosity of ionic liquid, and increasing conversion rate of ketoximes and selectivity of amides.
Abstract:
A catalyst component for olefin polymerization comprising an α-cyanosuccinate compound as an internal electron donor, a catalyst comprising the catalyst component, and use of the catalyst in olefin polymerization. When used in propylene polymerization, the catalyst can exhibit good catalytic activity and good hydrogen response, and the resulting polymer can have a good isotacticity and a good molecular weight distribution.
Abstract:
A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.