Abstract:
A method and system for delivering ordnance to a target via a remotely piloted or programmable aircraft including a yaw-to-turn guidance system, a deployment and launching system and packaging for the aircraft are disclosed.
Abstract:
A folding airfoil for an aircraft in which the wing or stabilizer airfoil n be folded and contained entirely within the fuselage of the aircraft. The airfoil comprises a series of elongated sheet metal channel sections of generally C-shaped cross section with the cross sectional dimension of successive channels decreasing so that each can nest entirely within an adjacent channel. The channels are each pivotally connected at the root end to the aircraft fuselage structure at spaced intervals along the chord line of the extended airfoil and the end sections of the channels are pivotally connected to each other such that the channels are pivotable between (1) an extended position extending spanwise of the extended airfoil to lie in tandem one behind the other, with adjacent channels partially overlapping and (2) a retracted or folded position in which the channels are nested within the leading edge channel section and lie along the chord line of the extended airfoil along the line of channel root end pivotal connections.
Abstract:
A drone type aircraft having a telescopic fuselage and folding aerodynamic surfaces to facilitate installation in a limited capacity bomb bay or storage compartment of a launch aircraft. Prior to launch, the drone is lowered from the aircraft on a supporting frame, the aerodynamic surfaces are extended, and the nose section of the fuselage is extended. The added fuselage capacity is used as fuel tankage, which is filled from the launch aircraft to increase the operating range of the drone.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
An assembly comprising a drone (1) and at least one releasable load (37) mounted on the drone, the drone comprising an on-board data processing system, the releasable load (37) comprising at least one sensor delivering a piece of information that can be used to ascertain the path of same and actuators for controlling flight control surfaces allowing it to be oriented as it falls, being linked to the drone (1) by an optical fibre (70), the load and the drone being arranged to exchange information via the optical fibre while the load is falling, the load transmitting data originating from said at least one sensor and the drone transmitting data for controlling the actuators, established taking into account that received from the load, in order to guide the load towards a predefined target.
Abstract:
An Unmanned Aerial Vehicle (UAV) has a first blade assembly configured to rotate in a first direction about an axis of rotation and a second blade assembly configured to rotate in a second direction opposite the first direction about the axis of rotation, wherein the second blade assembly can be selectively cocked relative to the axis of rotation.
Abstract:
One example embodiment includes a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV). The VTOL UAV includes a flight control system configured to provide avionic control of the VTOL UAV in a hover mode and in a level-flight mode. The VTOL UAV also includes a body encapsulating an engine and the flight control system. The VTOL UAV further includes a propeller disk coupled to the engine and configured to provide vertical thrust in the hover mode and to provide horizontal thrust for flight during the level-flight mode.
Abstract:
A system and method for controlling a swarm of UAVs that are stored on and released from an airborne platform, fly to and destroy a target, where the UAVs download target information from the airborne platform before being released therefrom, do not communicate with each other or the airborne platform while in flight, and do not depend of the presence of GPS. Each UAV includes a vision sensor that provides image data, a navigation module that receives the image data and causes the UAV to navigate and fly towards the target, and a target destruction module that receives the image data and causes the UAV to destroy the target.
Abstract:
A method and apparatus for operating an airfoil system. A gas may be generated. The gas may be sent into an inflatable airfoil system comprising an inflatable air foil and a section. The inflatable airfoil may have an inner end and an outer end in which the inflatable airfoil may be comprised of a number of materials that substantially pass electromagnetic waves through the inflatable airfoil. The section may have a number of openings in which the inner end of the inflatable airfoil may be associated with the section. The section may be configured to be associated with a fuselage. The number of openings may be configured to provide communications with an interior of the inflatable airfoil. The section with the number of openings may be configured to reduce reflection of the electromagnetic waves encountering the section.