Abstract:
A system having a drone and a payload frame connected to the drone, wherein the payload frame includes a mechanism for attaching at least one payload module to the payload frame and electrically coupling the at least one payload module to the payload frame. The electrical coupling includes a communication interface for communicating with a controller of the drone, and is configured to communicate a relative location of the at least one payload module in the payload frame, a weight of the at least one payload module and a volume of the at least one payload module. The controller of the drone is configured to calculate a weight distribution within the payload frame, based on the relative location of the at least one payload module, the weight of the at least one payload module and the volume of the at least one payload volume.
Abstract:
An Unmanned Aerial System configured to receive a request from a user and fulfill that request using an Unmanned Aerial Vehicle. The Unmanned Aerial System selects a distribution center that is within range of the user, and deploys a suitable Unmanned Aerial Vehicle to fulfill the request from that distribution center. The Unmanned Aerial System is configured to provide real-time information about the flight route to the Unmanned Aerial Vehicle during its flight, and the Unmanned Aerial Vehicle is configured to dynamically update its mission based on information received from the Unmanned Aerial System.
Abstract:
Embodiments herein describe a fog drone that selects, organizes, monitors, and controls a plurality of drones in a fleet. The fog drone receives a job to be completed from a dispatcher and identifies the resources for accomplishing the job such as the amount of material (e.g., fiber optic cable) or the type of drones (e.g., drones with RF antennas or digging implements) needed to execute the job. Using the identified resources, the fog drone estimates the number of drones needed to complete the job and can recruit available drones to form the fleet. Once the fleet is formed, the fog drone determines a number of drones to place on standby to replace active drones if those drones need to recharge or malfunction.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for ground control point assignment and determination. One of the methods includes receiving information describing a flight plan for the UAV to implement, the flight plan identifying one or more waypoints associated with geographic locations assigned as ground control points. A first waypoint identified in the flight plan is traveled to, and an action to designate a surface at the associated geographic location is designated as a ground control point. Location information associated with the designated surface is stored. The stored location information is provided to an outside system for storage.
Abstract:
In some embodiments, apparatuses and methods are provided herein useful to allocate unmanned aircraft system (UAS). Some embodiments, provide UAS allocation systems, comprising: a UAS database that stores for each registered UAS an identifier and corresponding operational capabilities; an allocation control circuit configured to: obtain a first set of multiple task parameters specified by a first customer and corresponding to a requested first predefined task that the customer is requesting a UAS be allocated to perform; identify, from the UAS database, a first UAS having operational capabilities to perform the first set of task parameters while implementing the first task; and cause an allocation notification to be communicated to a first UAS provider, of the multiple UAS providers, associated with the first UAS requesting the first UAS provider to allocate the identified first UAS to implement the first task.
Abstract:
A device receives a request for a mission that includes traversal of a flight path from one or more first locations to a second location and performance of mission operations, and determines required capabilities and constraints for the mission based on the request. The device identifies UAVs based on the required capabilities and the constraints, and calculates a cost effective mission plan, for the identified UAVs, based on the required capabilities and the constraints. The device generates mission plan instructions, for the cost effective mission plan, that include flight path instructions for the flight path and mission instructions for the mission operations. The device provides the mission plan instructions to the identified UAVs to permit the identified UAVs to travel from the one or more first locations to the second location, via the flight path, and to perform the mission operations.
Abstract:
A fact checking system utilizes social networking information and analyzes and determines the factual accuracy of information and/or characterizes the information by comparing the information with source information. The social networking fact checking system automatically monitors information, processes the information, fact checks the information and/or provides a status of the information, including automatically modifying a web page to include the fact check results. The fact checking system is able to be implemented utilizing a drone device.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for ground control point assignment and determination. One of the methods includes receiving information describing a flight plan for the UAV to implement, the flight plan identifying one or more waypoints associated with geographic locations assigned as ground control points. A first waypoint identified in the flight plan is traveled to, and an action to designate a surface at the associated geographic location is designated as a ground control point. Location information associated with the designated surface is stored. The stored location information is provided to an outside system for storage.
Abstract:
A safety and security device is housed on either an unmanned aerial vehicle or its land-based docking station and is combined with a cellular telephone for self-defense purposes. The phone broadcasts both recorded audio and video warnings on the device. A flashing light may be activated on the aerial platform or the docking station. The device may be integrated into a modular unit that combines numerous defensive mechanisms. These defensive mechanisms operate autonomously and respond to perceived threats.
Abstract:
An unmanned aircraft system (UAS) making use of unmanned aerial vehicles (UAVs) for more than one task. The inventors discovered that an improved UAS could be provided by combining one or more of these three elements: (1) hot-swappable modular kits (e.g., a plurality of components useful in UAVs to perform particular user-selectable tasks); (2) an interconnection mechanism for each component with identification protocols that provides both a physical and a data connection; and (3) an intelligent system that interprets the identification protocols and determines the configuration for a selected task, error checking, airworthiness, and calibration. The system and associated methods for the task based drone configuration and verification reduces the possibility of task failure by an operator.