Abstract:
Disclosed are a method, system, and a computer readable medium for dynamic routing of a drone. The method includes receiving a first flight mission by the drone, the first flight mission having a first cost relating to resources of the drone; flying the drone and capturing data according to the flight mission by a sensor; assessing quality of the captured data; and comparing the quality of the captured data to a pre-defined threshold. If the quality is below the threshold, continue with obtaining a second or further flight mission different from the first flight mission, and flying the drone and capturing data according to the second or further flight mission, the second or further flight mission having a second or further cost relating to resources of the drone. If the quality is equal or above the threshold, continue flying the drone and capturing data according to the current flight mission.
Abstract:
Disclosed is a drone having at least one rotor. The at least one rotor comprises a mast and at least two blades having a proximal end and a distal end. The at least two blades are arranged in connection with the mast by their proximal ends. The at least one of the blades comprises an electrically conductive element extending a distance D between its distal end and its proximal end. The electrically conductive element is electrically coupled with means for stopping the blades, thus forming an electrical circuit. The means for stopping the blades is arranged to be actioned when at least one electrical property of the electrical circuit change.
Abstract:
Disclosed is an an unmanned aerial vehicle. The unmanned aerial vehicle includes a payload arranged in a container, said container being equipped with a parachute; means for attaching the payload to the unmanned aerial vehicle and means for ejecting the payload from the unmanned aerial vehicle. The means for ejecting the payload from the unmanned aerial vehicle is communicatively coupled with the payload and configured to be actioned upon an emergency situation.
Abstract:
A system having a drone and a payload frame connected to the drone, wherein the payload frame includes a mechanism for attaching at least one payload module to the payload frame and electrically coupling the at least one payload module to the payload frame. The electrical coupling includes a communication interface for communicating with a controller of the drone, and is configured to communicate a relative location of the at least one payload module in the payload frame, a weight of the at least one payload module and a volume of the at least one payload module. The controller of the drone is configured to calculate a weight distribution within the payload frame, based on the relative location of the at least one payload module, the weight of the at least one payload module and the volume of the at least one payload volume.
Abstract:
Disclosed is a drone having at least one rotor. The at least one rotor comprises a mast and at least two blades having a proximal end and a distal end. The at least two blades are arranged in connection with the mast by their proximal ends. The at least one of the blades comprises an electrically conductive element extending a distance D between its distal end and its proximal end. The electrically conductive element is electrically coupled with means for stopping the blades, thus forming an electrical circuit. The means for stopping the blades is arranged to be actioned when at least one electrical property of the electrical circuit change.
Abstract:
Disclosed are a method and a system for modifying flight parameters of a remotely piloted aircraft. The remotely piloted aircraft includes a clock, at least one radio receiver and at least one radio transmitter for communicating with at least one radio transmitter of a ground station, via at least one radio communication network. The method includes analysing a communication between the remotely piloted aircraft and the ground station, such as calculating a communication quality. The method also includes modifying at least one flight parameter based on the calculated communication quality and pre-loaded instructions. The pre-loaded instructions comprise at least one threshold value of the communication quality and allowed flight parameters.
Abstract:
Disclosed are a method and a system for modifying flight parameters of a remotely piloted aircraft. The remotely piloted aircraft includes a clock, at least one radio receiver and at least one radio transmitter for communicating with at least one radio transmitter of a ground station, via at least one radio communication network. The method includes analysing a communication between the remotely piloted aircraft and the ground station, such as calculating the latency of the communication. The method also includes modifying at least one flight parameter based on the calculated latency and pre-loaded instructions.
Abstract:
Disclosed are a method and a system for modifying flight parameters of a remotely piloted aircraft. The remotely piloted aircraft includes a clock, at least one radio receiver and at least one radio transmitter for communicating with at least one radio transmitter of a ground station, via at least one radio communication network. The method includes analysing a communication between the remotely piloted aircraft and the ground station, such as calculating a communication quality. The method also includes modifying at least one flight parameter based on the calculated communication quality and pre-loaded instructions. The pre-loaded instructions comprise at least one threshold value of the communication quality and allowed flight parameters.
Abstract:
A system having a drone and a payload frame connected to the drone, wherein the payload frame includes a mechanism for attaching at least one payload module to the payload frame and electrically coupling the at least one payload module to the payload frame. The electrical coupling includes a communication interface for communicating with a controller of the drone, and is configured to communicate a relative location of the at least one payload module in the payload frame, a weight of the at least one payload module and a volume of the at least one payload module. The controller of the drone is configured to calculate a weight distribution within the payload frame, based on the relative location of the at least one payload module, the weight of the at least one payload module and the volume of the at least one payload volume.
Abstract:
Disclosed are a method and a system for modifying flight parameters of a remotely piloted aircraft. The remotely piloted aircraft includes a clock, at least one radio receiver and at least one radio transmitter for communicating with at least one radio transmitter of a ground station, via at least one radio communication network. The method includes analyzing a communication between the remotely piloted aircraft and the ground station, such as calculating the latency of the communication. The method also includes modifying at least one flight parameter based on the calculated latency and pre-loaded instructions.