Method for applying a layer to a substrate
    111.
    发明申请
    Method for applying a layer to a substrate 审中-公开
    将层施加到基底的方法

    公开(公告)号:US20110207333A1

    公开(公告)日:2011-08-25

    申请号:US13066835

    申请日:2011-04-26

    Abstract: A semiconductor wafer (10) is structured such that fine structures (3), such as membranes, bridges or tongues, with a thickness d

    Abstract translation: 半导体晶片(10)被构造为形成具有厚度d << D的精细结构(如膜,桥或舌),其中D表示半导体晶片(10)的厚度。 然后施加所需材料的颗粒。 在半导体晶片(10)中产生时间或空间温度梯度,例如。 通过逐步加热。 在这样的加热过程中,由于微细结构具有比每个面积小的热容量并且不能快速地传递热量,所以细微结构比其余的晶片更加快速地变热,变得更热。 以这种方式,可以将精细结构加热到允许颗粒烧结的温度。 为了涂覆,使半导体晶片(10)进入反应器(11)。 提供金属的前体化合物并将其进料到反应器(11),在反应器(11)中发生反应,在该反应过程中金属被转化成最终的化合物,并以颗粒的形式沉积在半导体晶片(10)上。

    THREE-DIMENSIONAL NANODEVICES INCLUDING NANOSTRUCTURES
    112.
    发明申请
    THREE-DIMENSIONAL NANODEVICES INCLUDING NANOSTRUCTURES 有权
    包括纳米结构的三维纳米器件

    公开(公告)号:US20110193052A1

    公开(公告)日:2011-08-11

    申请号:US12672995

    申请日:2008-05-19

    Abstract: Provided are three-dimensional (3D) nanodevices including 3D nanostructures. The 3D nanodevice includes at least one nanostructure, each nanostructure including an oscillation portion floating over a substrate and support portions for supporting both lengthwise end portions of the oscillation portion, supports disposed on the substrate to support the support portions of each of the nanostructures, at least one controller disposed at an upper portion of the substrate, a lower portion of the substrate, or both the upper and lower portions of the substrate to control each of the nanostructures, and a sensing unit disposed on each of the oscillation portions to sense an externally supplied adsorption material. Thus, unlike in a typical planar device, generation of impurities between a nanodevice and a substrate can be reduced, and mechanical vibration can be caused. In particular, since 3D nanostructures have mechanical and electrical characteristics, 3D nanodevices including new 3D nanostructures can be provided using nano-electro-mechanical systems (NEMS). Also, a single electron device, a spin device, or a single electron transistor (SET)-field effect transistor (FET) hybrid device can be formed using a simple process unlike in planar devices.

    Abstract translation: 提供了三维(3D)纳米器件,包括3D纳米结构。 3D纳米装置包括至少一个纳米结构,每个纳米结构包括漂浮在基板上的振荡部分和支撑部分,用于支撑振荡部分的两个纵向端部,支撑件设置在基板上以支撑每个纳米结构的支撑部分, 设置在基板的上部,基板的下部或基板的上部和下部的至少一个控制器,以控制每个纳米结构;以及感测单元,设置在每个振荡部分上以感测 外部供应的吸附材料。 因此,与典型的平面器件不同,可以减少纳米器件与衬底之间的杂质的产生,并且可能引起机械振动。 特别地,由于3D纳米结构具有机械和电学特性,可以使用纳米机电系统(NEMS)提供包括新的3D纳米结构的3D纳米器件。 此外,可以使用与平面器件不同的简单工艺来形成单电子器件,自旋器件或单电子晶体管(SET)场效应晶体管(FET)混合器件。

    Biological detection based on differentially coupled nanomechanical systems using self-sensing cantilevers with attonewton force resolution
    113.
    发明授权
    Biological detection based on differentially coupled nanomechanical systems using self-sensing cantilevers with attonewton force resolution 有权
    基于差分耦合纳米机械系统的生物检测,使用自感悬臂与分子力分解

    公开(公告)号:US07959873B1

    公开(公告)日:2011-06-14

    申请号:US11491394

    申请日:2006-07-20

    Abstract: A biosensor is comprised of a free and a biofunctionalized recognition self-sensing nanocantilever, a dock adjacent to the ends of the nanocantilevers, and a gap between the nanocantilevers and dock. The self-sensing cantilevers each include a semiconductor piezoresistor defined in a pair of legs about which the cantilevers flex. A bias power or current is applied to the piezoresistor. The sensitivity of the cantilevers is optimized for a given ambient temperature and geometry of the cantilevers and dock by minimizing the force spectral density, SF, of the cantilevers to determine the optimum bias power, Pin. A sub-aN/√Hz force sensitivity is obtained by scaling down the dimensions of the cantilevers and supplying an optimum bias power as a function of temperature and geometry.

    Abstract translation: 生物传感器由免费的和生物功能化的识别自感纳米聚合物,邻近纳米聚合物末端的码头以及纳米悬臂与码头之间的间隙组成。 自感悬臂各自包括限定在一对腿部的半导体压敏电阻,悬臂弯曲在该支脚周围。 偏压电源或电流施加到压敏电阻。 通过最小化悬臂的力谱密度(SF)来确定最佳偏置功率Pin,悬臂梁的灵敏度对给定的环境温度和悬臂和基座的几何形状进行了优化。 通过缩小悬臂的尺寸并提供作为温度和几何形状的函数的最佳偏置功率,可以获得sub-aN /√Hz力灵敏度。

    METHOD FOR MANUFACTURING NANOSTRUCTURE AND NANOSTRUCTURE MANUFACTURED BY THE SAME
    115.
    发明申请
    METHOD FOR MANUFACTURING NANOSTRUCTURE AND NANOSTRUCTURE MANUFACTURED BY THE SAME 有权
    制造纳米结构的纳米结构方法及其制造方法

    公开(公告)号:US20110008245A1

    公开(公告)日:2011-01-13

    申请号:US12769241

    申请日:2010-04-28

    Abstract: Provided are methods for producing nanostructures and nanostructures obtained thereby. The methods include heating a certain point of a substrate dipped into a precursor solution of the nanostructures so that the nanostructures are grown in a liquid phase environment without evaporation of the precursor solution. The methods show excellent cost-effectiveness because of the lack of a need for precursor evaporation at high temperature. In addition, unlike the vapor-liquid-solid (VLS) process performed in a vapor phase, the method includes growing nanostructures in a liquid phase environment, and thus provides excellent safety and eco-friendly characteristics as well as cost-effectiveness. Further, the method includes locally heating a substrate dipped into a precursor solution merely at a point where the nanostructures are to be grown, so that the nanostructures are grown directly at a desired point of the substrate. Therefore, it is possible to grow and produce nanostructures directly in a device. As a result, unlike the conventional process, it is not necessary to assemble and integrate the nanostructures produced in a sacrificial substrate into a device.

    Abstract translation: 提供了由此得到的纳米结构体和纳米结构体的制造方法。 所述方法包括加热浸入纳米结构的前体溶液中的衬底的某一点,使得纳米结构在液相环境中生长而不蒸发前体溶液。 由于在高温下不需要前体蒸发,所以这些方法显示出优异的成本效益。 此外,与气相中进行的气液固体(VLS)处理不同,该方法包括在液相环境中生长纳米结构,从而提供优异的安全性和环保特性以及成本效益。 此外,该方法包括仅在纳米结构生长的点处局部加热浸入前体溶液中的基底,使得纳米结构直接在基底的所需点生长。 因此,可以直接在器件中生长和生产纳米结构。 结果,与常规方法不同,不需要将在牺牲衬底中生产的纳米结构组装并整合到器件中。

    METHOD FOR CHEMICAL SENSOR FABRICATION AND RELATED SENSOR
    119.
    发明申请
    METHOD FOR CHEMICAL SENSOR FABRICATION AND RELATED SENSOR 有权
    化学传感器制造方法及相关传感器

    公开(公告)号:US20090193874A1

    公开(公告)日:2009-08-06

    申请号:US12362636

    申请日:2009-01-30

    Abstract: A method includes forming a hole in a first wafer and forming a sensor structure in or on a second wafer. The second wafer includes a piezoelectric material. The method also includes bonding the first wafer and the second wafer, where the sensor structure is located between the wafers. The method further includes forming a sensing layer by depositing material between the wafers through the hole in the first wafer. The sensing layer could be formed by depositing a sensing layer material on the second wafer using direct printing. Also, the hole through the first wafer could be formed using ultrasonic milling, micro-drilling, laser drilling, wet etching, and/or plasma etching. A spacer material could be used to bond the wafers together, such as frit glass paste or an organic adhesive. Trenches could be formed in the first wafer to facilitate easier separation of multiple sensors.

    Abstract translation: 一种方法包括在第一晶片中形成孔并在第二晶片上形成传感器结构。 第二晶片包括压电材料。 该方法还包括将第一晶片和第二晶片接合,其中传感器结构位于晶片之间。 该方法还包括通过在第一晶片中的孔通过在晶​​片之间沉积材料来形成感测层。 感测层可以通过使用直接印刷在第二晶片上沉积感测层材料来形成。 此外,穿过第一晶片的孔可以使用超声波铣削,微钻孔,激光钻孔,湿蚀刻和/或等离子体蚀刻来形成。 可以使用间隔物材料将晶片粘合在一起,例如熔结玻璃浆料或有机粘合剂。 可以在第一晶片中形成沟槽,以便于更容易地分离多个传感器。

    METHODS FOR MANUFACTURING CMOS COMPATIBLE BIO-SENSORS
    120.
    发明申请
    METHODS FOR MANUFACTURING CMOS COMPATIBLE BIO-SENSORS 审中-公开
    制造CMOS兼容生物传感器的方法

    公开(公告)号:US20090155948A1

    公开(公告)日:2009-06-18

    申请号:US11959282

    申请日:2007-12-18

    Abstract: A manufacture method for CMOS sensor, which comprise of steps such as: forming protection layer on a substrate having multiple device structural layers, then using first photo-resist layer as mask for etching to form patterned molecular sensing layer, then forming third photo resist layer and etching protection layer and substrate so as to remove partial substrate underneath the sensor structure.

    Abstract translation: 一种用于CMOS传感器的制造方法,其包括以下步骤:在具有多个器件结构层的衬底上形成保护层,然后使用第一光致抗蚀剂层作为蚀刻掩模以形成图案化分子感测层,然后形成第三光致抗蚀剂层 以及蚀刻保护层和衬底,以去除传感器结构下方的部分衬底。

Patent Agency Ranking