Abstract:
A process for oligomerizing isoolefins, the process including: feeding an isoolefin to an oligomerization reaction zone; feeding an oxygen-containing reaction moderator to the oligomerization reaction zone; concurrently in the oligomerization reaction zone: contacting the isoolefin with an oligomerization catalyst to convert at least a portion of the isoolefin to oligomers comprising dimers and trimers of the isoolefin; reacting a portion of the moderator with a portion of at least one of the isoolefin and the oligomers to form an oxygenated oligomerization byproduct; recovering an effluent from the oligomerization reaction zone comprising the oligomers and the oxygenated oligomerization byproduct; fractionating at least a portion of the effluent to recover a fraction comprising the oxygenated oligomerization byproduct and the trimers and a fraction comprising the dimers.
Abstract:
A biocomponent feedstock can be hydroprocessed using a hydrogen-containing refinery as a source of hydrogen gas. A relatively low cost catalyst, such as a water gas shift catalyst and/or spent hydrotreating catalyst, can be used as a hydrogenation catalyst for the process. The hydroprocessing can allow for olefin saturation and/or deoxygenation of the biocomponent feed by using a relatively low value refinery stream, e.g., containing from about 20 mol % to about 60 mol % hydrogen.
Abstract:
Methods, apparatus, and/or feedstock suitable for use in biofuels production, as well as biofuel compositions. A method of producing a biofuel includes hydroprocessing glycerides derived from an oleaginous microorganism and composed of at least 10% by weight of fatty acid chains of length C16 or lower, and producing a biofuel having a cold-flow pour point of about 20° Celsius or lower.
Abstract:
The present invention is directed toward compositions suitable for use as dielectric fluids, lubricant fluids and biodiesel fluids. Compositions described herein are obtained from a saturated, unsaturated or combinations of both monol, diol, triol or polyol acyl ester based fluid and/or a non-ester based fluid and 2,4,6-tris(di-C1-C6-alkylaminomethyl)phenol and/or the carboxylic acid salt of 2,4,6-tris(di-C1-C6-alkylaminomethyl)phenol. These compositions demonstrate improved oxidative stability and/or hydrolytic stability at higher use temperatures.
Abstract:
A method for extraction from Lesquerella seeds having an acid value of less than 6 mg KOH/g, said method including the following steps: a seed-processing step i) that includes a single operation of flattening the seeds and at least one operation of drying the seeds; and a step ii) of placing the processed seeds into contact with a mixture of light anhydrous alcohol and co-solvent under temperature and time conditions that are sufficient for extracting a raw oil including phospholipids and gums, as well as obtaining a de-oiled cake.
Abstract:
Oleaginous yeast strains are used to hydrolyze biomass (e.g. wheat straw) that has been pretreated using dilute acid, in order to produce lipids. The lipids may be used as feedstock for producing biofuels.
Abstract:
Disclosed is a method of preparing a petroleum-alternative bio fuel material such as 5-hydroxymethyl-2-furfural (HMF), 5-alkoxymethyl-2-furfural, levulinic acid alkil ester, etc. through a single process without saccharification, using a catalyst conversion reaction, from galactan that can be massively supplied at low costs and extracted from macroalgae of marine reusable resources.Thus, the macroalgae of the marine biomass resources is used so that a carbon source can be more easily extracted than that of a lignocellulosic biomass resource without a problem of having an effect on grain price like a crop-based biomass.
Abstract:
The present invention generally relates to oil compositions and methods of producing such oil compositions. More particularly, the present invention relates to an oil composition recovered from a fermentation product as well as methods of recovering such oil compositions for use in various processes such as bio-diesel production as well as in various edible applications.
Abstract:
The invention relates to a method for the selective extraction of functionalised fatty acid esters from seeds of oleaginous plants, wherein said method includes: a) at least one step of extracting fatty acid esters that comprises simultaneously feeding into a reactor containing said seeds a light anhydrous alcohol, a basic catalyst and an extraction solvent non-miscible with said light alcohol and in which said functionalised fatty ester is not soluble in order to obtain a mixture of esters and glycerol; b) and at least one step of selectively extracting hydroxylated fatty acid esters by feeding into the reactor said extraction solvent in a backflush direction relative to the light alcohol in order to obtain an alcohol phase enriched with fatty acid esters, a glycerol phase and a cake. The invention can be used for obtaining a fraction having a high concentration of hydroxylated or epoxydised functionalised fatty acid esters, and a solvent phase containing the other non-functionalised fatty acid esters directly from the seeds of oleaginous plants.
Abstract:
Methods are provided for refining natural oil feedstocks. The methods comprise reacting the feedstock with a low-molecular-weight olefin or mid-weight olefin in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters. In certain embodiments, the methods further comprise separating the olefins from the esters in the metathesized product. In certain embodiments, the methods further comprise transesterifying the esters in the presence of an alcohol to form a transesterified product.