Abstract:
A small infrared sensor has a wide infrared light-receiving area (viewing angle), high electromagnetic shielding characteristics, and excellent electromagnetic-wave resistance characteristics. In the infrared sensor, supporting portions are disposed at four corners of a substantially rectangular opening in a package. The supporting portions support an optical filter, disposed so as to cover the opening, at positions that are lower than an upper end of an inner peripheral wall defining the opening. While the optical filter is supported by the supporting portions as a result of inserting a portion of a surface side of the optical filter facing the supporting portions into the opening, the optical filter is secured to the package. The optical filter and the package are joined and secured, and electrically connected to each other through a conductive adhesive.
Abstract:
An auto darkening eye protection device comprising a shutter assembly and a control circuit. The shutter assembly is adjustable between a light state and a dark state. The control circuit comprises a sensing circuit, a weld detect circuit, a positive voltage generator, and a negative voltage generator. The sensing circuit senses incident light and provides an output indicative of the incident light. The weld detect circuit receives the output of the sensing circuit, and enables a dark state drive signal to be delivered to the shutter assembly. The positive and negative voltage generators output the dark state drive signal to the shutter assembly to switch the shutter assembly from the light state to the dark state upon enablement by the weld detect circuit. The dark state drive signal includes a high voltage pulse followed by a stable AC waveform. The high voltage pulse is formed by a positive voltage signal and a negative voltage signal.
Abstract:
A computer may include a database and a power reducing routine. The database may be configured to store an input power level of an input laser beam transmitted onto and storing power within a gain module. The database may be further configured to store a discharge power level of at least partially discharged stored power discharged from the gain module through an output laser beam. The database may also be configured to store a power safety differential limit. The power reducing routine may include an algorithm. The algorithm may be configured to calculate a power differential by subtracting the discharge power level from the input power level, and to at least one of reduce power to and shut down the input laser beam if the calculated power differential exceeds the power safety differential limit.
Abstract:
A light shield (204) for blocking light traveling toward a PIN photodiode (413) from a glass substrate (314) side is formed of a conductive material, and a reference electric potential (Vr−nVoc) equal to that of a cathode of the PIN photodiode (413) is applied to the light shield (204) from a power supply circuit (266). Thus, inductive noise for a photoelectric conversion device used for an ambient light sensor is further reduced in a display device.
Abstract:
The present invention relates to a method and system of array imaging that extends or maximizes the longevity of the sensor array by minimizing the effects of photobleaching. The imaging system has a light source, a variable exposure aperture, and a variable filter system. The system extends the longevity of sensors by (1) using the variable exposure aperture to selectively expose sections of the sensor array containing representative numbers of each type of sensor, and/or (2) using the variable filter system to control the intensity of the excitation light, providing only the intensity required to induce the appropriate excitation and increasing that intensity over time as necessary to counteract the effects of photobleaching.
Abstract:
A light sensor for recording the position of a light source includes a photo detector and a light modulator. The light modulator is configured to modulate the quantity of light hitting the photo detector based on an incident angle (α) of the light from the light source on the sensor.
Abstract:
An auto darkening eye protection device comprising a shutter assembly and a control circuit. The shutter assembly is adjustable between a light state and a dark state. The control circuit comprises a sensing circuit, a weld detect circuit, a positive voltage generator, and a negative voltage generator. The sensing circuit senses incident light and provides an output indicative of the incident light. The weld detect circuit receives the output of the sensing circuit, and enables a dark state drive signal to be delivered to the shutter assembly. The positive and negative voltage generators output the dark state drive signal to the shutter assembly to switch the shutter assembly from the light state to the dark state upon enablement by the weld detect circuit. The dark state drive signal includes a high voltage pulse followed by a stable AC waveform. The high voltage pulse is formed by a positive voltage signal and a negative voltage signal.
Abstract:
Systems and methods are provided for improving electromagnetic interference resistance in sensor-amplifier configurations. A sensor receives a stimulus and generates a current in response to the stimulus. The current is propagated to an amplifier circuit via a pair of cross-over bond-wires creating two counter rotating loop antennae where electromagnetic interference currents induced in one loop cancel interference currents induced in the second loop such that only the sensor current is propagated to the amplifier circuit. The amplifier circuit then amplifies the propagated sensor signal.
Abstract:
Method for limiting amount of radiation impinging on a radiation-sensitive detector device by directing radiation toward the detector, permitting the radiation to impinge upon the detector device when the radiation is below a predetermined threshold, and utilizing radiation having wavelengths different from signals of interest to initiate limiting of the radiation impinging upon the detector when the predetermined threshold is exceeded. The optical limiter includes an IR limiting layer pair selected so that energy from visible and near infrared radiation activates the optical limiter. The limiting layer pair may includes a layer closer to the source of radiation of e.g. vanadium dioxide, vanadium sesquioxide, or germanium crystal and a layer further from the source of radiation of e.g. chalcogenide glass, germanium crystal, or sodium chloride crystal.
Abstract:
An auto darkening eye protection device comprising a shutter assembly and a control circuit. The shutter assembly is adjustable between a light state and a dark state. The control circuit comprises a sensing circuit, a weld detect circuit, a positive voltage generator, and a negative voltage generator. The sensing circuit senses incident light and provides an output indicative of the incident light. The weld detect circuit receives the output of the sensing circuit, and enables a dark state drive signal to be delivered to the shutter assembly. The positive and negative voltage generators output the dark state drive signal to the shutter assembly to switch the shutter assembly from the light state to the dark state upon enablement by the weld detect circuit. The dark state drive signal includes a high voltage pulse followed by a stable AC waveform. The high voltage pulse is formed by a positive voltage signal and a negative voltage signal.