Abstract:
A tympanic thermometer includes a thermally conductive nozzle extending from a distal end of the thermometer. A base of a sensor can is thermally connected to the nozzle to define a path of conductive heat transfer from the nozzle to the base of the can thereby minimizing a thermal gradient between proximal and distal ends of the sensor can when temperature is measured in the ear.
Abstract:
In the head portion, the thermopile is arranged substantially in the center of the head portion. The preamplifier board is arranged near the thermopile. The heat diffusion member made of a high heat conductive material is arranged so as to surround the thermopile and the preamplifier board. The main board and the laser diode are arranged between the upper surface of the head casing and the upper surface of the heat diffusion member. The power supply board and the laser diode are arranged between the down surface of the head casing and the down surface of the heat diffusion member. The thermopile, the preamplifier board, the main board, the power supply board, and the laser diodes are arranged out of contact with the heat diffusion member.
Abstract:
Tympanic temperature measurements are obtained from the output of a radiation sensor mounted in an extension from a housing. The housing has a temperature display and supports electronics for responding to sensed radiation. The sensor is mounted in an improved extension which is shaped to fit into smaller ear canals, such as a child's ear canal or a swollen adult ear canal. Within the extension, the sensor is positioned in a highly conductive environment and receives radiation from an external target through a tube. Electronics determine the target temperature based on the sensor output signal and a temperature sensor signal.
Abstract:
A system for determining and monitoring wine temperature includes a housing, a first temperature sensor for sensing an ambient temperature and a second temperature sensor for sensing the temperature of a wine bottle, for example without opening the bottle. A processor processes the ambient temperature with the wine bottle temperature to determine the temperature of wine within the bottle. Measured temperatures may be displayed in Celsius or Fahrenheit units on a display, responsive to user inputs. A user may select a target wine temperature, which may further be displayed. The system may fit around the neck of the wine bottle or over the cork of the wine bottle, or the system may be configured as a coaster. Sensors may be contact or non-contact sensors such as infrared sensors. In one embodiment, an infrared system for determining and monitoring wine temperature is provided as a bottle stopper that replaces the cork of a wine bottle.
Abstract:
A body temperature detector is particularly suited to axillary temperature measurements of adults. The radiation sensor views a target surface area of the body and electronics compute an internal temperature of the body as a function of ambient temperature and sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature to account for varying perfusion rate. Preferably, the coefficient varies from a normal of about 0.13 through a range to include 0.09. The ambient temperature used in the function is assumed at about 80° F. but modified with detector temperature weighted by 20%.
Abstract:
One embodiment of the invention is directed to methods and apparatus for determining a variation of a calibration parameter of a pixel of the thermal sensor during operation of the imaging apparatus, after an initial calibration procedure. Another embodiment of the invention is directed to methods and apparatus for calculating a gain calibration parameter using first and second ambient temperature values and respective first and second resistance values for a pixel of a sensor. A further embodiment of the invention is directed to calculating an offset calibration parameter for at least one pixel using a gain of the at least one pixel between first and second times and an ambient temperature at a third time, wherein the pixel is exposed to both scene and ambient radiation at the third time.
Abstract:
A first thermistor 8 and a second thermistor 9 are arranged forwardly and rearwardly of a thermopile sensor 5. A thermopile chip 55 is arranged and interposed between the first thermistor 8 and an integrated thermistor 57. A sensor cover is mounted in contact with front and side portions of a can portion 59 of a thermopile casing 56. A temperature or a radiant quantity of infrared rays on the front portion of the can portion is estimated from a temperature change of the integrated thermistor per second.
Abstract:
A radiometric detector (10) has reduced optical losses, improved wavelength selectivity, improved signal to noise, and improved signal processing methods to achieve temperature measurements of an object (16) from about 10° C. to 4,000° C. A YAG rod collection optic (12) directly couples object radiation (14) to a filter (18) and photo detector (20). The filter determines which radiation wavelength range is measured, and optionally includes a hot/cold mirror surface (22) for reflecting undesired radiation wavelengths back to the specimen. In a preferred measurement method, at least two detectors are employed, each detecting a different wavelength range. A dual-wavelength temperature measurement computation is employed that is independent of radiation transmission losses and the emissivity of the object being measured.
Abstract:
A method of fabricating a reference microbolometer structure on a substrate comprises the steps of applying a sacrificial layer to the substrate; applying a further layer to the sacrificial layer, the further layer incorporating a temperature sensitive material; and partially removing the sacrificial layer from the substrate such that a portion of the sacrificial layer is not removed at least in a region between temperature sensitive material and the substrate. The portion of the sacrificial layer that is not removed thereby forms a body of solid material, and a path of low thermal impedance, between the temperature sensitive material and the substrate.
Abstract:
Tympanic temperature measurements are obtained from the output of a radiation sensor mounted in an extension from a housing. The housing has a temperature display and supports electronics for responding to sensed radiation. The sensor is mounted in an improved extension which is shaped to fit into smaller ear canals, such as a child's ear canal or a swollen adult ear canal. Within the extension, the sensor is positioned in a highly conductive environment and receives radiation from an external target through a tube. Electronics determine the target temperature based on the sensor output signal and a temperature sensor signal.