Abstract:
Methods of forming and analyzing doped monocrystalline silicon each comprise the steps of providing: a vessel, particulate silicon, a dopant, and a float-zone apparatus. The vessel for each method comprises silicon and defines a cavity. The methods each further comprise the steps of combining the particulate silicon and the dopant to form treated particulate silicon, and disposing the treated particulate silicon into the cavity of the vessel. The methods yet further comprise the step of float-zone processing the vessel and the treated particulate silicon into doped monocrystalline silicon with the float-zone apparatus. The analytical method further comprises the step of providing an instrument. The analytical method yet further comprises the steps of removing a piece from the doped monocrystalline silicon, and determining the concentration of the dopant in the piece with the instrument. The methods are useful for forming and analyzing monocrystalline silicon having various types and/or concentrations of dopant(s).
Abstract:
In various embodiments, the present disclosure describes methods and systems for detecting microbes in a sample. The methods are generally applicable to quantifying the number of target bacteria in a sample counted from a detection region of a flow cytometer histogram. The detection methods can be employed in the presence of other microorganisms and other non-target microbe components to selectively quantify the amount of a target microbe. The methods are advantageous over those presently existing for testing of foodstuffs and diagnostic evaluation in their speed, accuracy and ease of use. Various swab collection devices and kits useful for practicing the present disclosure are also described herein.
Abstract:
Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration. The electrochemical and optical SG values may be weighted (as a function of the respective sensor's overall reliability index (RI)) and the weighted SGs combined to obtain a single, fused SG value.
Abstract:
A calibration device is described for calibrating a scatterometer, which is designed in particular for measuring a particle concentration in exhaust gases of motor vehicles. The calibration device has at least one scattering body which emits scattered light having a defined intensity and distribution when irradiated with a light beam, the scattering body having an emission surface for the scattered light, to which is assigned at least one light sensor for detecting the scattered light exiting the emission surface. A screening body having at least one screen opening through which the scattered light exits in the direction of the at least one light sensor is assigned to the emission surface of the scattering body.
Abstract:
A method for producing a multilayer tissue phantom involves successively forming at least two layers, each layer formed by depositing a viscous flowable material over a supporting element or over a previously formed layer of the phantom supported by the supporting element, selectively redistributing the material while material is solidifying to control a thickness distribution of the layer, and allowing the material to solidify sufficiently to apply a next layer. The supporting element supports the material in 2 or 3 directions and effectively molds a lumen of the tissue. The neighbouring layers are of different composition and of chosen thickness to provide desired optical properties and mechanical properties of the phantom. The phantom may have selected attenuation and backscattering properties to mimic tissues for optical coherence tomography imaging.
Abstract:
A focus height sensor in an optical system for inspection of semiconductor devices includes a sensor beam source that emits a beam of electromagnetic radiation. A reflector receives the beam of electromagnetic radiation from the sensor beam source and directs the beam toward a surface of a semiconductor device positioned within a field of view of the optical system. The reflector is positioned to receive at least a portion of the beam back from the surface of the semiconductor device to direct the returned beam to a sensor. The sensor receives the returned beam and outputs a signal correlating to a position of the surface within the field of view along an optical axis of the optical system.
Abstract:
A water-quality monitoring system for an aquatic environment that includes a monitoring unit and a chemical indicator wheel designed and configured to be submerged in the water being monitored. The chemical indicator wheel includes a holder that supports a number of chemical indicators selected for use in measuring levels of constituents of the water. When in use, the wheel is drivingly engaged with a monitoring/measuring unit that includes at least one reader for reading the chemical indicators. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo an optically detectable physical change as levels of one or more constituents of the water change. Also disclosed are a variety of features that can be used to provide the monitoring system with additional functionalities.
Abstract:
A defect inspection method and device for irradiating a linear region on a surface-patterned sample mounted on a planarly movable table, with illumination light from an inclined direction relative to a direction of a line normal to the sample, next detecting in each of a plurality of directions an image of the light scattered from the sample irradiated with the illumination light, then processing signals obtained by the detection of the images of the scattered light, and thereby detecting a defect present on the sample; wherein the step of detecting the scattered light image in the plural directions is performed through elliptical lenses in which elevation angles of the optical axes thereof are different from each other, within one plane perpendicular to a plane formed by the normal to the surface of the table on which to mount the sample and the longitudinal direction of the linear region irradiated with the irradiation light, the elliptical lenses being formed of circular lenses having left and right portions thereof cut.
Abstract:
Combined illuminator/light collectors (I/LCs) that provide measurement and/or reference light to a target and collect light from the target. One example of a use for a combined I/LC of the present disclosure is for an optic of an optical reader used to read one or more chemical indicators that undergo physical changes that can be optically detected. The combined I/LC includes a spot lensing designed and configured in conjunction with the target to provide spot illumination on the target from one or more light sources. A light collector collects light from the target resulting from the spot illumination. Some embodiments further include dispersive lensing to direct a portion of the light from each light source away from the spot illumination to keep that light from interfering with the spot illumination.
Abstract:
A system and method for dosing additives to an aquatic environment. The rate of addition of an additive is monitored by an aquatic environment monitoring device as the additive is added to the aquatic environment. Stored information related to aquatic environment parameters is utilized to generate a rate correction instruction that may be used to make changes in a rate of addition by an automatic dosing device and/or provide an alert to a user of the aquatic environment. A user interface may be provided for entry of certain aquatic environment parameters.