Abstract:
An x-ray source has multiple electron sources spaced apart from each other along a longitudinal direction that is defined as being parallel to the rotation axis of a rotating anode which is common to all of the electron sources. Each electron source emits electrons that strike the anode at respective strike points that are spatially separated from each other along the longitudinal direction, to produce respective emission centers, from which x-rays are emitted, each emission center being associated with respective ones of the x-ray sources.
Abstract:
A compact apparatus can form multi X-ray beams with good controllability. Electron beams (e) emitted from electron emission elements (15) of a multi electron beam generating unit (12) receive the lens effect of a lens electrode (19). The resultant electron beams are accelerated to the final potential level by portions of a transmission-type target portion (13) of an anode electrode (20). The multi X-ray beams (x) generated by the transmission-type target portion (13) pass through an X-ray shielding plate (23) and X-ray extraction portions (24) in a vacuum chamber and are extracted from the X-ray extraction windows (27) of a wall portion (25) into the atmosphere.
Abstract:
A cathode shield can comprise a shield body, a pair of tabs for defining a focal spot length, and a lip for concentrically aligning the cathode shield relative to a mounting element and/or an electron source of a cathode assembly. The tabs may be integral with the shield body and spaced a distance apart from each other. The distance may at least partially define the focal spot length of the electron source associated with the cathode assembly. The lip may also be integral with the shield body and extend from the shield body around at least a portion of a perimeter of the shield body so as to define a recess that is configured to receive the mounting element of the cathode assembly.
Abstract:
A modular x-ray source for an imaging system includes an electron source mounting plate, two or more electron sources each mounted on and electrically coupled to the electron source mounting plate, and a target block positioned proximately to the two or more electron sources. The source includes two or more targets mounted on and electrically coupled to the target block, each target positioned opposite a respective one of the two or more electron sources to receive a respective beam of electrons therefrom.
Abstract:
A CT system includes a rotatable gantry having an opening for receiving an object to be scanned and an x-ray source coupled to the gantry and configured to project x-rays through the opening. The x-ray source includes a target, a first cathode configured to emit a first beam of electrons toward the target, a first gridding electrode coupled to the first cathode, a second cathode configured to emit a second beam of electrons toward the target, and a second gridding electrode coupled to the second cathode. The system includes a generator configured to energize the first cathode to a first kVp and to energize the second cathode to a second kVp, and a detector attached to the gantry and positioned to receive x-rays that pass through the opening. The system also includes a controller configured to apply a gridding voltage to the first gridding electrode to block emission of the first beam of electrons toward the target, apply the gridding voltage to the second gridding electrode to block emission of the second beam of electrons toward the target, and acquire dual energy imaging data from the detector.
Abstract:
A multi-beam x-ray device has a multi-beam x-ray tube in the form of a polygon, wherein the focal spots of the x-ray radiation are arranged along the polygon sides. An x-ray tube control unit controls the x-ray radiation emission such that an x-ray beam is alternately emitted from each polygon side in a specified sequence. Multiple first diaphragms with at least one respective first diaphragm aperture are arranged such that they can move into the beam path of the x-ray tube. A first diaphragm, whose first diaphragm aperture limits the cross section of the x-ray beam emitted from the x-ray tube, is associated with every polygon side. A number of slice images can be generated from different directions without a movement of the x-ray tube.
Abstract:
The invention is directed to a miniaturized source (10; 20; 40; 80) of ionizing electromagnetic radiation, comprising a first electrode (11; 21; 41, 42; 81), which at least temporarily can function as a cathode, and a second electrode (12; 22; 43, 44, 45; 82), which at least temporarily can function as an anode, a first conductor (13; 23; 46, 47; 83) connected to the first electrode, and a second conductor (14; 24; 48, 49, 50; 84) connected to the second electrode. According to one embodiment, the first electrode and at least a portion of the first conductor are provided on a substrate (15; 10 25; 51; 85). According to another embodiment, also the second electrode and at least a portion of the second conductor are provided on the substrate. In all embodiments, the electrodes are arranged such that the electric field between the electrodes essentially is parallel to the surface of the substrate.
Abstract:
In one embodiment, an X ray tube assembly is provided. The X ray tube assembly comprises an evacuated envelope, an anode disposed at a first end of the evacuated envelope and a cathode assembly disposed at a second end of the evacuated envelope. The cathode assembly comprises a cathode filament and a cathode cup defining a plurality of electrically isolated deflection electrodes. Further, the cathode cup comprises at least two portions, a first portion comprising an electrically conductive material and a second portion comprising an electrically insulating material. In another embodiment, a method of manufacturing the X ray tube assembly is provided.
Abstract:
In a method and device for producing a tomosynthetic 3D x-ray image, a number of 2D projection images of an examination subject are acquired using a fixed x-ray source. The x-ray source has multiple, individually controllable emitters that respectively emit a single x-ray dose from various different directions. The tomosynthetic 3D image is reconstructed from the individual 2D projection images, and at least one 2D projection image is composed of multiple individual images.
Abstract:
A compact apparatus can form multi X-ray beams with good controllability. Electron beams (e) emitted from electron emission elements (15) of a multi electron beam generating unit (12) receive the lens effect of a lens electrode (19). The resultant electron beams are accelerated to the final potential level by portions of a transmission-type target portion (13) of an anode electrode (20). The multi X-ray beams (x) generated by the transmission-type target portion (13) pass through an X-ray shielding plate (23) and X-ray extraction portions (24) in a vacuum chamber and are extracted from the X-ray extraction windows (27) of a wall portion (25) into the atmosphere.