Abstract:
There is provided a multilayer ceramic electronic component including, a ceramic body including a plurality of dielectric layers stacked in a thickness direction, satisfying T/W>1.0 when a width and a thickness thereof are defined as W and T, respectively, and having a groove portion inwardly recessed in a length direction in at least one main surface thereof, a plurality of first and second internal electrodes disposed in the ceramic body to face each other, having the dielectric layers interposed therebetween, and alternately exposed through both end surfaces of the ceramic body, and first and second external electrodes formed to extend from the both end surfaces of the ceramic body to the at least one main surface having the groove portion formed therein.
Abstract:
A ceramic multilayer substrate incorporating a chip-type ceramic component, in which, even if the chip-type ceramic component is mounted on the surface of the ceramic multilayer substrate, bonding strength between the chip-type ceramic component and an internal conductor or a surface electrode of the ceramic multilayer substrate is greatly improved and increased. The ceramic multilayer substrate includes a ceramic laminate in which a plurality of ceramic layers are stacked, an internal conductor disposed in the ceramic laminate, a surface electrode disposed on the upper surface of the ceramic laminate, and a chip-type ceramic component bonded to the internal conductor or the surface electrode through an external electrode. The internal conductor or the surface electrode is bonded to the external electrode through a connecting electrode, and the connecting electrode forms a solid solution with any of the internal conductor, the surface electrode, and the external electrode.
Abstract:
In a ceramic capacitor, first and second electrode terminals each include a bonded-to-substrate portion, a first bonded-to-electrode portion bonded to a first edge of one of first and second external electrodes, a second bonded-to-electrode portion bonded to a second edge of the one of first and second external electrodes and disposed at a distance from the first bonded-to-electrode portion in the first directions, and a connecting portion connecting the first and second bonded-to-electrode portions and the bonded-to-substrate portion. W1/W0 is about 0.3 or more, and h/L is about 0.1 or more.
Abstract:
Disclosed are a printed circuit board and a method for manufacturing the same. The printed circuit board includes a flexible substrate divided into first, second, and third regions, a first rigid substrate in the first region of the flexible substrate, and a second rigid substrate in the third region of the flexible substrate. The first and second substrates expose the second region of the flexible substrate.
Abstract:
This semiconductor device, which has electronic components provided in a cavity of a module having a cavity structure, can be prevented from being increased in size. In the device, the module having the cavity structure is provided with a plurality of components, for instance, an IC (3) and chip components (6a, 6b), on one surface facing a motherboard (9), said one surface being on the cavity side. The motherboard (9) is provided with the chip components (6c, 6d) on parts of one surface facing the module having the cavity structure, said parts not having the components provided on the module surface having the components provided thereon.
Abstract:
A method for forming cavity in substrate includes setting start position on closed loop line having circumference L for substrate, consecutively irradiating laser from laser device upon board for the substrate such that holes are formed, and moving the device in loop from the start position along the line such that penetrating hole is formed through the board. The start position of first loop is set as base position, the moving includes shifting the start position by distance d after each loop and controlling such that the moving satisfies p=Σdi, m≅L/p and M=m×n, where i=1 to n, n represents number of loops, p represents pitch of the holes, m represents number of the holes in loop, Σdi is distance from the base position for the start position after i-th loop, and M is number of the holes by the loops.
Abstract:
A wiring board includes a substrate having an opening portion, multiple electronic devices positioned in the opening portion such that the electronic devices are arrayed in the lateral direction of each of the electronic devices, and an insulation layer formed on the substrate such that the insulation layer covers the electronic devices in the opening portion of the substrate. The substrate has a wall surface defining the opening portion and formed such that the opening portion is partially partitioned and the electronic devices are kept from making contact with each other.
Abstract:
Embedding a power modification component such as a capacitance inside of an adaptor board located to extend over and beyond the vias of the main circuit board so that a portion of the interposer board containing the embedded capacitance is located beyond where the vias or blinds are located. This permits that via to conduct through the opening. In this way, the capacitance and the resistance will have a closer contact point to the electrical component. A resistance can also be embedded in an opening in the adaptor board and be vertically aligned within the opening to make contact with a pad on top of the adaptor board and a pad at the bottom of the adaptor board so that electricity conducts through the embedded component.
Abstract:
There is provided an array type multilayer ceramic electronic component, including: a ceramic element having a plurality of dielectric layers laminated therein; first and second external electrodes spaced apart from each other in a length direction on one surface and the other surface opposing the one surface of the ceramic element; and a plurality of internal electrode laminated parts including a plurality of first and second internal electrodes opposing each other within the ceramic element and connected to the first and second external electrodes, wherein a portion of the internal electrode laminated parts is different from other internal electrode laminated parts thereof in terms of the number of laminations of the first and second internal electrodes.
Abstract:
An electronic component includes an interposer, and a multilayer ceramic capacitor. The interposer includes a substrate including front and back surfaces that are parallel or substantially parallel to each other. Two first mounting electrodes and two second mounting electrodes are located on the front surface of the substrate, on opposite end portions in the longitudinal direction. Recesses are located in the longitudinal side surface of the insulating substrate. Connecting conductors are each provided in the side wall surface of each of the recesses. The connecting conductors connect a first external connection electrode and a second external connection electrode that are located on the back surface of the substrate, and first mounting electrodes and second mounting electrodes.