Abstract:
A monolithic capacitor includes a multilayer body including a plurality of stacked dielectric layers, first and second capacitor electrodes inside the multilayer body, and outer electrodes on at least one surface of the multilayer body. The first and second capacitor electrodes are arranged perpendicularly or substantially perpendicularly to first and second surfaces of the multilayer body. The first capacitor electrode includes a capacitor portion opposed to the second capacitor electrode with the dielectric layer interposed therebetween, a lead portion connected to one outer electrode, and an intermediate portion not opposed to the second outer electrode. The second capacitor electrode includes a capacitor portion opposed to the first capacitor electrode with the dielectric layer interposed therebetween, and a lead portion connected to the other outer electrode. The intermediate portion is arranged in a gap area that is surrounded, when viewed in a stacking direction of the dielectric layers, by imaginary lines extending from inner exposed ends of the lead portions in a direction interconnecting the first and second surfaces of the multilayer body, by the capacitor portions, and by the first surface.
Abstract:
A method of manufacturing a mounting substrate in which a pair of monolithic ceramic capacitors each of which includes a multilayer body in which a plurality of dielectric ceramic sheets and a plurality of substantially planar inner electrodes are stacked on top of one another and at least a pair of outer electrodes electrically connected to the inner electrodes and provided on a surface of the multilayer body are mounted on a circuit board includes a process of joining the outer electrodes to lands formed on the front rear surfaces of the circuit board, the lands formed on the front surface being formed at positions that are plane-symmetrical to positions of the corresponding lands formed on the rear surface while being electrically connected to the corresponding lands formed on the rear surface, such that surface directions of planes of the inner electrodes match each other.
Abstract:
Laminated ceramic capacitors include ceramic layers and inner electrodes that are alternately laminated. The inner electrodes are laminated in the same lamination direction, and a first outer electrode and a second outer electrode are electrically connected to the inner electrodes. In a mounting process, the laminated ceramic capacitors are mounted on a mounting surface such that the inner electrodes are perpendicular or substantially perpendicular to the mounting surface.
Abstract:
A multilayer ceramic capacitor includes flat-shaped inner electrodes that are laminated. An interposer includes an insulating substrate that is larger than contours of the multilayer ceramic capacitor. A first mounting electrode that mounts the multilayer ceramic capacitor is located on a first principal surface of the insulating substrate, and a first external connection electrode for connection to an external circuit board located on a second principal surface. The multilayer ceramic capacitor is mounted onto the interposer in such a way that the principal surfaces of the inner electrodes are parallel or substantially parallel to the principal surface of the interposer, that is, the first and second principal surfaces of the insulating substrate.
Abstract:
A chip-component structure includes an interposer on which a multilayer capacitor is mounted. The interposer includes component connecting electrodes, external connection electrodes, side electrodes, and in-hole electrodes. The component connecting electrodes and the external connection electrodes are electrically connected by the side electrodes and the in-hole electrodes. Outer electrodes of the capacitor are joined to the component connecting electrodes.
Abstract:
A multilayer ceramic capacitor includes a stacked body and first and second external electrodes. When a dimension of the stacked body in a length direction is L0, a dimension of the stacked body in a width direction is W0, a dimension of the stacked body in a stacking direction is T0, a dimension of the first outer layer portion in the stacking direction is T1, a dimension of the second outer layer portion in the stacking direction is T2, a dimension of the first side margin in the width direction is W1, a dimension of the second side margin in the width direction is W2, a dimension of the first end margin in the length direction is L1, and a dimension of the second end margin in the length direction is L2, conditions of (L1+L2)/L0>(W1+W2)/W0 and (L1+L2)/L0>(T1+T2)/T0 are satisfied, and a condition of 0.244≤(L1+L2)/L0≤0.348 is satisfied.
Abstract:
A composite electronic component includes an electronic element mounted on a resistance element in a height direction. The electronic element includes an electronic element body, and first and second external electrodes separated from each other in a length direction. The resistance element includes a base portion, a resistor disposed on an upper surface of the base portion, and first and second upper surface conductors on the upper surface of the base portion. The first and second upper surface conductors are separated from each other in the length direction, and the resistor is located between the first and second upper surface conductors. A dimension in the height direction of the resistor is smaller than both a dimension in the height direction of the first external electrode of a portion located on a lower surface of the electronic element body, and a dimension in the height direction of the second external electrode of a portion located on a lower surface of the electronic element body.
Abstract:
An electronic component includes an electronic element including external electrodes on a surface and a substrate terminal on which the electronic element is mounted. The substrate terminal includes a first main surface, a second main surface opposite the first main surface, and a peripheral surface joining the first main surface and the second main surface. The substrate terminal includes mounting electrodes provided on the second main surface and electrically connected to the external electrodes of the electronic element, and connection electrodes provided on the first main surface and electrically connected to lands of a circuit substrate. A maximum width of the connection electrodes is greater than a maximum width of the mounting electrodes.
Abstract:
An electronic component includes an electronic element including outer electrodes on a surface, a substrate terminal on which the electronic element is mounted, and a conductor that covers at least a portion of the substrate terminal. The substrate terminal includes a first main surface, a second main surface at a side opposite to the first main surface, and a side surface connecting the first main surface and the second main surface. The substrate terminal includes a mounting electrode that is provided on the first main surface and is electrically connected to the outer electrodes of the electronic element. The mounting electrode includes adjacent portions that are located to be adjacent to the side surface of the substrate terminal. The conductor covers at least a portion of the adjacent portion.
Abstract:
A circuit board includes a wiring board on which is mounted first and second laminated ceramic capacitors near or adjacent to each other, arranged along a direction parallel or substantially parallel to a main surface of the wiring board, and electrically connected in series or in parallel via a conductive pattern provided on the wiring board. One width direction side surface of the first laminated ceramic capacitor and one length direction end surface of the second laminated ceramic capacitor oppose each other perpendicularly or approximately perpendicularly.