Abstract:
A process for pre-treatment of a crude tall oil (CTO) for removal of impurities is disclosed. The process comprises a first pre-treatment step involving a CTO wash and a separation of a first oil phase comprising refined CTO and an aqueous phase holding impurities, and a second step involving a separation of a second oil phase from the aqueous phase. A process for refining of crude tall oil (CTO) is also disclosed. The process comprises fractionation under vacuum of a refined CTO into at least one stream of refined tall diesel (RTD) or tall oil fatty acids (TOFA) and at least one stream of resin acid(s) (RA). The stream of RTD or TOFA is deoxygenated forming hydrocarbon compounds in a subsequent step. This invention also relates to a refined tall diesel. Furthermore, a process for the production of a refined tall diesel (RTD) composition, wherein crude sulphate turpentine(s) (CST) is added to the refined tall diesel (RTD) composition, is described.
Abstract:
Low sulphur marine fuel compositions are provided. Embodiments comprise greater than 50 to 90 wt % of a residual hydrocarbon component, with the remaining 10 and up to 50 wt % selected from a non-hydroprocessed hydrocarbon component, a hydroprocessed hydrocarbon component, and a combination thereof. Embodiments of the marine fuel composition can have a sulphur content of about 0.1 wt % or less.
Abstract:
Novel liquid-full process for improving cold flow properties and increasing yield of middle distillate fuel feedstock by hydrotreating and dewaxing the feedstock in liquid-full reactors.
Abstract:
Treating a hydrocarbon feed having a sulphur content of at least 0.5% by weight, an asphaltenes content of at least 1% by weight, an initial boiling point of at least 340° C. and a final boiling point of at least 480° C., in order to obtain at least one deasphalted oil fraction with a sulphur content of 0.5% by weight or less and a sediment content of 0.1% by weight or less.
Abstract:
Feeds containing triglycerides are processed to produce an olefinic diesel fuel product and propylene. The olefinic diesel can optionally be oligomerized to form a lubricant base oil product. The olefinic diesel and propylene are generated by deoxygenating the triglyceride-containing feed using processing conditions that enhance preservation of olefins that are present in the triglycerides. The triglyceride-containing feed is processed in the presence of a catalyst containing a Group VI metal or a Group VIII metal and optionally a physical promoter metal.
Abstract:
Provided herein are processes for ethylene oligomerization in the presence of an ionic liquid catalyst and a co-catalyst to produce a hydrocarbon product comprising C10-C55 oligomers.
Abstract:
The invention relates to a process for the production of diesel fuel bases comprising a sulfur content that is less than 100 ppm, starting from a feedstock that is obtained from a renewable source, comprising the following stages: a) A stage for bringing the feedstock into contact with a fixed-bed hydrotreatment catalyst for producing an effluent that comprises a gaseous fraction comprising hydrogen and a hydrocarbon-based liquid fraction, d) A stage for bringing into contact at least one portion of the hydrocarbon-based liquid fraction in the presence of a selective hydroisomerization catalyst in a fixed bed, e) A stage for separating the effluent that is obtained from stage d) into a gaseous fraction that comprises hydrogen and at least one diesel-fuel-based fraction.
Abstract:
The present invention relates to a method for joint production of low octane gasoline and high octane gasoline. In the process of oil or light oil rectification, the extraction points of the distillates therein are finely divided, and the temperature ranges for extraction of fractions are narrowed down. Each of the low and high octane components having a high content in the range from C6-C12 (which may be extended to C5-C14 where necessary) is then separately extracted. After that, low octane components are combined into compression ignition low octane gasoline products, while high octane components are combined into high octane gasoline products. The remaining fractions are respectively added as supplementing agents into the low octane gasoline products or high octane gasoline products dependent on their octane ratings. Low octane gasoline is used in compression ignition gasoline engines, while high octane gasoline is used in spark ignition gasoline engines.
Abstract:
Methods of making fuel are described herein. A method may include providing a first working fluid, a second working fluid, and a third working fluid. The method may further include exposing the first working fluid to a first high-voltage electric field to produce a first plasma, exposing the second working fluid to a second high-voltage electric field to produce a second plasma, and exposing the third working fluid to a third high-voltage electric field to produce a third plasma. The method may also include contacting the third plasma, the second plasma, and the first plasma to form a plasma mixture, cooling the plasma mixture using a heat exchange device to form a cooled plasma mixture, and contacting the cooled plasma mixture with a catalyst to form a fuel fluid.
Abstract:
An object is to provide a method for producing a jet fuel composition capable of producing a jet fuel composition with excellent quality at a high yield even when a jet fuel blendstock derived from an FT synthesis oil is used, and a jet fuel composition produced by the production method. It is characterized by including a step of mixing a certain Fischer Tropsch (FT) synthesis jet fuel blendstock with a certain petroleum based jet fuel blendstock so that the ratio of the FT synthesis jet fuel blendstock in the composition ranges from 20 to 80% by volume.