Abstract:
In one embodiment, a diagnostic system for biological samples is disclosed. The diagnostic system includes a diagnostic instrument, and a portable electronic device. The diagnostic instrument has a reference color bar and a plurality of chemical test pads to receive a biological sample. The portable electronic device includes a digital camera to capture a digital image of the diagnostic instrument in uncontrolled lightning environments, a sensor to capture illuminance of a surface of the diagnostic instrument, a processor coupled to the digital camera and sensor to receive the digital image and the illuminance, and a storage device coupled to the processor. The storage device stores instructions for execution by the processor to process the digital image and the illuminance, to normalize colors of the plurality of chemical test pads and determine diagnostic test results in response to quantification of color changes in the chemical test pads.
Abstract:
Diffuse image measurement system and digital image formation method. The system includes a source of light with time-varying intensity directed at a scene to be imaged. A time-resolved light meter is provided for receiving light reflected from the scene to generate time-resolved samples of the intensity of light incident at the light meter. The temporal variation in the intensity of light incident at the light meter is associated with a function of a radiometric property of the scene, such as a linear functional of reflectance, and a computer processes the samples to construct a digital image. The spatial resolution of the digital image is finer than the spatial support of the illumination on the scene and finer than the spatial support of the sensitivity of the light meter. Using appropriate light sources instead of impulsive illumination significantly improves signal-to-noise ratio and reconstruction quality.
Abstract:
Provided are a circular polarization filter including a circularly-polarized light separating layer (preferably, a layer having a cholesteric liquid crystalline phase fixed therein or a laminate including a reflective linear polarizer and a λ/4 phase difference layer), in which the circularly-polarized light separating layer selectively transmits either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength region, a transparent medium which is transparent with respect to light in the specific wavelength region is provided at least on one surface side of the circularly-polarized light separating layer, and the transparent medium has an inclined surface which forms an angle of 1° to 30° relative to the surface on the transparent medium side of the circularly-polarized light separating layer, and sensor system using the circular polarization filter. The circular polarization filter of the invention is capable of providing circularly polarized light with a high circular polarizance, or improving sensitivity in the sensor system using circularly polarized light.
Abstract:
A scanning module including first path shifting unit changing a path of an incident electromagnetic wave from a light source; a first driving unit adjusting the path of the electromagnetic wave by moving the first path shifting unit; and a Bessel beam generating unit making a Bessel beam on a portion of an object, using the electromagnetic wave with the path changed by the path shifting unit. A detection probe which includes a light source generating an electromagnetic wave; a path shifting unit changing a path of an electromagnetic wave from a light source; a Bessel beam generating unit making a Bessel beam on a portion of an object, using the electromagnetic wave with the path changed by the path shifting unit; a detecting unit detecting intensity of a wave from the object, and a housing accommodating the light source, path shifting unit, Bessel beam generating unit, and detecting unit.
Abstract:
An object of the present invention is to provide a photosensor lens which, in the case of using a plurality of light emitting elements to form a reflective photosensor, can maximize the efficiency of light irradiation of the light emitting elements with a simple structure. Provided is a photosensor lens configured to condense irradiation light from a plurality of light emitting elements 2 housed in a unit case 1 in a detection region 3 outside the unit case 1, and to condense reflected light from the detection region 3 at a light receiving element 4 in the unit case 1. A single convex lens surface 5 is formed on one side of the photosensor lens, and a light-receiving convex lens surface 6 sharing an optical axis with the single convex lens surface 5, and a plurality of light-emitting convex lens surfaces 7 each having an optical axis in parallel with the optical axis of the light-receiving convex lens surface 6 are integrally formed on the opposite side of the photosensor lens.
Abstract:
The present disclosure relates to an optical sensor module, an optical sensing accessory, and an optical sensing device. An optical sensor module comprises a light source, a photodetector, and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. An optical sensing accessory and an optical sensing device comprise the optical sensor module and other electronic modules to have further applications.
Abstract:
An optoelectronic module that includes a reflectance member which exhibits mitigated or eliminated fan-out field-of-view overlap can be concealed or its visual impact minimized compared to a host device in which the optoelectronic module is mounted. In some instances, the reflectance member can be implemented as a plurality of through holes and in other instances the reflectance member may be a contiguous spin-coated polymeric coating. In general, the reflectance member can be diffusively reflective to the same particular wavelengths or ranges of wavelengths as the host device in which it is mounted.
Abstract:
A multi-segment optical component applied to increase signal-to-noise ratio includes a base, a central lens portion, an isolating lens portion and a collecting lens portion. The central lens portion is disposed on center of the base. The isolating lens portion is disposed by a side of the central lens portion, and the collecting lens portion is disposed by the other side of the central lens portion opposite to the isolating lens portion. At least one of the isolating lens portion and the collecting lens portion has a curvature radius different from a curvature radius of the central lens portion, and the curvature radius of the isolating lens portion can be similar to or different from the curvature radius of the collecting lens portion. The central lens portion has a central axle which does not overlap a curvature center of one of the isolating lens portion and the collecting lens portion.
Abstract:
An optoelectronic sensor for recognizing objects or object properties comprises a light transmitter for transmitting transmitted light into a detection zone, a light receiver for receiving received light and an evaluation unit which is configured to detect an object located in or projecting into a detection zone and/or to determine a property of such an object with reference to the received light received by the light receiver. The light transmitter comprises a monolithic semi-conductor component having a first light emitting layer and a second light emitting layer, with the first light emitting layer being configured for emitting red light and the second light emitting layer being configured for emitting infrared light, and with the second light emitting layer defining a central light emitting surface and the first light emitting layer defining an outer light emitting surface surrounding the central light emitting surface.
Abstract:
Some embodiments include a method of operating a detection sensor array. The detection sensor array has multiple detection sensors. Each detection sensor of the multiple detection sensors has an enabled state and a disabled state, and each detection sensor of the multiple detection sensors is configured to detect and identify electromagnetic radiation when in the enabled state and not to detect and identify electromagnetic radiation when in the disabled state. The detection sensor array also has a test state in which all of the multiple detection sensors operate in the enabled state when the detection sensor array is in the test state. Other embodiments of related systems and methods are also disclosed.