Abstract:
In a laser-produced plasma (LPP) extreme ultraviolet (EUV) system, laser pulses are used to produce EUV light. To determine the energy of individual laser pulses, a photoelectromagnetic (PEM) detector is calibrated to a power meter using a calibration coefficient. When measuring a unitary laser beam comprising pulses of a single wavelength, the calibration coefficient is calculated based on a burst of the pulses. A combined laser beam has main pulses of a first wavelength alternating with pre-pulses pulses of a second wavelength. To calculate the energy of the main pulses in the combined laser beam, the calibration coefficient calculated for a unitary laser beam of the main pulses is used. To calculate the energy of the pre-pulses in the combined laser beam, a new calibration coefficient is calculated. When the calculated energy values drift beyond a pre-defined threshold, the calibration coefficients are recalculated.
Abstract:
There is set forth in one embodiment an apparatus and method for imparting a phase shift to an input waveform for output of a converted waveform. In one embodiment, a phase shift can be provided by four wave mixing of an input waveform and a pump pulse. In one embodiment, there is set forth an apparatus and method for generating a high resolution time domain representation of an input waveform comprising: dispersing the input waveform to generate a dispersed input waveform; subjecting the dispersed input waveform to four wave mixing by combining the dispersed input waveform with a dispersed pump pulse to generate a converted waveform; and presenting the converted waveform to a detector unit. In one embodiment a detector unit can include a spectrometer (spectrum analyzer) for recording of the converted waveform and output of a record representing the input waveform.
Abstract:
A beam profiler which can determine whether or not a laser beam can be suitably output at a lower cost. The beam profiler is provided with a partial reflecting mirror, light receiving parts, and laser intensity sensors which are individually attached to the light receiving parts. The light receiving parts include a first light receiving part which receives a first region which includes an optical axis of the laser beam in a laser irradiation region of the laser beam and a second light receiving part which is insulated heat-wise from the first light receiving part and which receives a second region of a laser irradiation region which is different from the first region.
Abstract:
Provided are a method and an apparatus for measuring the spectral intensity and phase of a light pulse having an arbitrary time duration. The apparatus includes: a nonlinear mixing means for generating a signal light pulse expressed by the following Formula (★ denotes an operator representing general nonlinear mixing, and α denotes a coefficient which is proportional to a nonlinear susceptibility in the nonlinear mixing) by nonlinearly mixing a reference light pulse having an electric field Er(t−τ) delayed by an optical delay means and a measurement target light pulse having an electric field E0(t); and Er(t−τ)+αEr(t−τ)★E0(t) an imaging spectrum device for spectrally splitting the signal light pulse and outputting a Fourier transform signal expressed by the following Formula (F denotes a symbol indicating Fourier transform, * denotes a complex conjugate, and R denotes a symbol indicating a real part), |F[Er(t−τ)]|2+|αF[Er(t−τ)★E0(t)]|2+2R{αF[Er(t−τ)]*·F[Er(t−τ)★E0(t)]}.
Abstract:
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
Abstract:
A seal section for use in a wellbore electrical submersible pump and includes an optic fiber detection arrangement wherein one or more optic fiber sensors is used to detect an operational parameter associated with the seal section. The operational parameters can include temperature, vibration and pressure.
Abstract:
A seal section for use in a wellbore electrical submersible pump and includes an optic fiber detection arrangement wherein one or more optic fiber sensors is used to detect an operational parameter associated with the seal section. The operational parameters can include temperature, vibration and pressure.
Abstract:
A multi-directional sensor system includes a light source configured to generate a beam of electromagnetic radiation; and a transmitter configured to transmit the beam of electromagnetic radiation to a target. The transmitter may include (i) a plurality of optical fibers, wherein one or more of the optical fibers are configured to receive the beam of electromagnetic radiation, and (ii) a surface on which one end of each of the plurality of optical fibers terminate in a different direction and/or orientation thereof to emit electromagnetic radiation. A detector is configured to detect electromagnetic radiation responsive to electromagnetic radiation transmitted to the target. A method of sensing is also disclosed.
Abstract:
A method of detecting edges of a preamplifier signal including identifying a first portion of the signal wherein each part thereof has an instantaneous slope having a first polarity, identifying a second portion immediately following the first portion wherein each part thereof has an instantaneous slope having a second opposite polarity, and identifying a third portion immediately following the second portion wherein each part thereof has an instantaneous slope having the first polarity. The method further includes determining a first difference between the magnitudes associated with an end point and a beginning point of the second segment, determining a second difference between the magnitude associated with an end point of the third segment and the magnitude associated with a beginning point of the first segment, and detecting an edge if: (i) the first difference exceeds a threshold, and (ii) the second difference exceeds a fraction of the threshold.
Abstract:
A system and method of monitoring with temperature stabilization. The system can include a housing operably connected to a fiber optic cable that provides a light wave thereto, a relay optic for receiving the light wave and being positioned in the housing, a radiation device for processing or producing radiation in the frequency range of 10 GHz to 100 THz from the light wave and being positioned in the housing, a temperature sensor in thermal communication with the housing, and a thermal management device in thermal communication with the housing where the thermal management device adjusts a temperature within the housing based on temperature conditions measured by the temperature sensor. Other embodiments are disclosed.