Abstract:
A six-degree-of-freedom micro vibration suppression platform includes a basic platform, a load platform, six sets of single-degree-of-freedom active and passive composite vibration isolation devices that are exactly the same and a controller. Upper and lower ends of each set of single-degree-of-freedom active and passive composite vibration isolation devices are connected with the load platform and the basic platform, respectively. A control method includes: calculating a logical axis signal, calculating a logical axis control signal, calculating physical axis real-time control signals and a transfer step.
Abstract:
The invention discloses a method for correcting aero-optical thermal radiation noise, comprising steps of: pretreating a degraded image to obtain a multi-scale degraded image group, conducting iteration process of obtaining an optimal solution by using a last scale estimation result as an original value of next scale estimation according to the multi-scale degraded image group, thereby facilitating original-scale bias field estimation, and restoring the degraded image according to the original-scale bias field estimated value thereby obtaining an image after aero-optical thermal radiation noise correction. The invention also discloses a system for correcting aero-optical thermal radiation noise. The invention is capable of solving problems with conventional methods, comprising poor correction effect, high complexity, and incapability in correcting the thermal radiation noise at an image level, and applicable to restoration of an image with aero-optical thermal radiation noise.
Abstract:
An infrared imaging detection and positioning method for an underground building in a planar land surface environment comprises: obtaining an original infrared image g0 formed after stratum modulation is performed on an underground building, and determining a local infrared image g of a general position of the underground building in the original infrared image g0; setting an iteration termination condition, and setting an initial value h0 of a Gaussian thermal diffusion function; using the local infrared image g as an initial target image f0, and performing iteration solution of a thermal expansion function hn and a target image fn by using a maximum likelihood estimation algorithm according to the initial value h0 of the Gaussian thermal diffusion function; and determining whether the iteration termination condition is met, if the iteration termination condition is met, using the target image fn obtained by means of iteration solution this time as a final target image f; and if the iteration termination condition is not met, continuing to perform iteration calculation. In the method, by performing demodulation processing on the infrared image formed after stratum modulation is performed on the underground building, the display of the infrared image of the original underground building is clearer, and the real structure of the underground building can be inverted.
Abstract:
A gas laser, including: a semiconductor laser, an optical beam-shaping system, a pair of electrodes, a discharge tube, a rear mirror, and an output mirror. The pair of electrodes includes two electrodes. The electrodes are symmetrically disposed at an outer layer of the discharge tube in parallel. The electrodes are connected to a radio-frequency power supply via a matching network, and the electrodes operate to modify working gas in the discharge tube through radio-frequency discharge. The rear mirror and the output mirror are disposed at two end surfaces of the discharge tube, respectively. The rear mirror, taken together with the output mirror and the discharge tube, form a resonant cavity. The output mirror is configured to output a laser beam.
Abstract:
Provided is an operating method of a full-bridge sub-module (FBSM)-based modular multilevel converter for HVDC transmission with AC-side voltage boosting. The peak value of the AC-side voltage is increased under a constant DC-link voltage by using FBSM's negative output voltage under steady state, wherein keeping the semiconductor's current rating constant during AC-side voltage boosting is in favor of reducing converter cost by decreasing energy interaction between the upper and lower arms in a leg, and further capacitance value of FBSM's capacitor under a constant capacitor voltage ripple, keeping the RMS value of AC-side current constant during AC-side voltage boosting can effectively improve transmission capacity of the converter while reducing converter cost, and keeping converter transmission capacity constant during AC-side voltage boosting can reduce RMS value of arm currents while reducing converter cost, thereby reducing power loss of FBSMs and improving converter efficiency.
Abstract:
The present invention discloses a co-aperture broadband infrared optical system, belonging to the field of infrared optical system. The system realizes long wave infrared (LWIR) imaging and broadband infrared spectrum measurement, and solves the problems of limited optical path layout, large volume and high cost of an optical system. The present invention includes a Cassegrain lens, a spectroscope, a reflector, several lens groups, an FPA interface and an optical fiber interface. Light (2 μm˜12 μm) is incident to the Cassegrain lens to be focused, then is split by the spectroscope, where 50% of the LWIR light (8 μm˜10 μm) passes through the lens group for aberration correction, and the image plane is focused again at the imaging interface. The other 50% of the LWIR light (8 μm˜10 μm) and the infrared reflected light (2 μm˜8 μm and 10 μm˜12 μm) pass through the lens group, and are reflected by the reflector, then focused at the optical fiber interface. The present invention is compact in overall structure and convenient and flexible to use, has relatively low cost, and can be integrated into an image-spectrum associated detection device to implement automatic detection and tracking, which can be widely used in civil and military fields such as environmental monitoring and infrared guidance.
Abstract:
The invention discloses a numerical control (NC) system based on a virtual host computer, the NC system comprising the virtual host computer arranged on a remote server, a local lower computer and a human-machine interactive device for human-machine interaction. The human-machine interactive device is used for providing a human-machine interactive input/output interface. The virtual host computer integrates a human-machine interactive module, a non-real-time/half-real-time task execution unit and a lower-computer control unit, and is used for receiving a NC machining instruction, processing the instruction to form a machine-tool control instruction through the non-real-time/half-real-time task execution unit, and transmitting the control data to the local lower computer through the lower-computer control unit by utilizing a network. The local lower computer controls a machine tool to execute real-time motion control and logic control. The NC system employs a new architecture formed by the upper computer and the lower computer by utilizing virtualization technology, and solves the restriction problems of data processing capability, HMI function expansion and remote machining of a conventional NC system.
Abstract:
Disclosed is an Arabic optical character recognition method using Hidden Markov Models and decision trees, comprising: receiving an input image containing Arabic text, removing all diacritics from the input image by detecting a bounding box of each diacritic and comparing coordinates thereof to those of a bounding box of a text body, segmenting the input image into four layers, and conducting feature extraction on the segmented four layers, inputting results of feature extraction into a Hidden Markov Model thereby generating HMM models for representing each Arabic character, conducting iterative training of the HMM models until an overall likelihood criterion is satisfied, and inputting results of iterative training into a decision tree thereby predicting locations and the classes of the diacritics and producing final recognition results. The invention is capable of facilitating simple recognition of Arabic by utilizing writing feature thereof, and meanwhile featuring comparatively high recognition precision.
Abstract:
A multi-layer phase change material, including: a multi-layer film structure. The multi-layer film structure includes a plurality of periodic units. The periodic units each includes a first single-layer film phase change material and a second single-layer film phase change material. The first single-layer film phase change material and the second single-layer film phase change material are alternately stacked. The first single-layer film phase change material includes chemical components that are different from chemical components included in the second single-layer film phase change material, or the first single-layer film phase change material includes chemical components that are the same as chemical components included in the second single-layer film phase change material and a percent composition of the chemical components included in the first single-layer film phase change material is different from a percent composition of the chemical components included in the second single-layer film phase change material.
Abstract:
Provided is a magnetic nano temperature measurement method under a triangle wave excitation magnetic field relating to a technical field of nano measurement. The method further comprises steps of: (1) positioning a magnetic nano sample at a measured object; (2) applying a triangle wave excitation magnetic field on area of the magnetic nano sample; (3) detecting a triangle wave excitation magnetic field-time curve and a magnetization-time curve of the magnetic nano sample; (4) obtaining a magnetizing curve of the magnetic nano sample, namely excitation magnetic field-magnetization curve, by the triangle wave excitation magnetic field curve and the magnetization curve, and sampling the magnetizing curve to obtain magnetization Mi of the magnetic nano sample under excitation magnetic field Hi; and (5) determining temperature of the measured object by curve fitting with excitation magnetic field Hi as input, magnetization Mi as output, and a relationship between the excitation magnetic field and the magnetization as objective function. The invention obtains a magnetizing curve rapidly using a triangle wave excitation magnetic field, and realizes real-time and precise temperature measurement based on magnetic nanoparticles by inversion algorithms according to the magnetizing curve based on a temperature measurement model of magnetic nanoparticles under a DC magnetic field.