Abstract:
The present invention relates to the use of aqueous hybrid binders for producing coating compositions, more particularly in high-gloss coating materials (high-gloss paints), and also to a process for their preparation with low residual monomer content.
Abstract:
A coating material includes a first aqueous dispersion (A) and a second aqueous dispersion (B) wherein a dispersoid of the first aqueous dispersion (A) has an average particle diameter of 1 to 20 μm and a dispersoid of the second aqueous dispersion (B) has an average particle diameter 1/100 to 1/5 of that of the dispersoid of the first aqueous dispersion (A), and the mass ratio (the aqueous dispersion (A)/the aqueous dispersion (B)) of the dispersoid of the first aqueous dispersion (A) to the dispersoid of the second aqueous dispersion (B) is 2/1 to 100/1. Also provided is a container, which is coated with the coating material and has excellent properties.
Abstract:
Disclosed are coating compositions that include a continuous phase that includes water and a dispersed phase that includes a microgel having a mean particle size of greater than 50 nanometers. The microgel is formed from reactants selected so as to provide a copolymer having a certain calculated Tg and includes a cycloaliphatic (meth)acrylate.
Abstract:
A resistivity stable aqueous dispersion and a method for making an aqueous dispersion. The dispersion including polythienothiophene and at least one colloid-forming polymeric acid having a pH of from about 3 to about 10. The method includes preparing an aqueous dispersion containing polythienothiophene and adjusting the pH of the dispersion to a sufficiently high pH to provide resistivity stability. Devices utilizing layers formed of pH adjusted polythienothiophene are also disclosed.
Abstract:
Blended fluoropolymer compositions are provided. In one embodiment, a liquid dispersion of a first fluoropolymer is blended with a liquid dispersion of a second fluoropolymer. The first fluoropolymer may be polytetrafluoroethylene (PTFE), such as a low molecular weight PTFE (LPTFE) that has been polymerized via a dispersion or emulsion polymerization process, and which has not been agglomerated, irradiated, or thermally degraded. The LPTFE may be in the form of an aqueous dispersion, having a mean particle size of less than 1.0 microns (μm), with the LPTFE having a first melt temperature (Tm) of 332° C. or less. The second fluoropolymer may be a melt processible fluoropolymer (MPF), such as methylfluoroalkoxy (MFA), fluorinated ethylene propylene (FEP), or perfluoroalkoxy (PFA), for example, in the form of an aqueous dispersion, and having a mean particle size of less than 1.0 microns (μm). Blending of the dispersions facilitates interaction of the LPTFE and MPF on a submicron level to facilitate intimate blending such that, when the blended fluoropolymer composition is dried, a crystal structure representing a true alloy of the fluoropolymers is formed, having melt characteristics that differ from those of the individual fluoropolymers. The blended fluoropolymer composition may be used to provide a coating having improved impermeability, stain resistance, abrasion resistance, smoothness, and higher contact angles.
Abstract:
A process is provided to produce an aqueous dispersion wherein the aqueous dispersion enhances the water and oil repellency of materials. The process comprises: 1) contacting at least one fluoroalkyl monomer, at least one water-dispersible polyester, water, and optionally an ethylenically unsaturated monomer to form a pre-emulsion; and 2) polymerizing the pre-emulsion in a polymerization zone in the presence of an initiator to produce the aqueous dispersion.In another embodiment, a process to produce an aqueous dispersion is provided. The process comprises: 1) contacting at least one fluoroalkyl monomer, at least one water-dispersible polyester, water, and optionally an ethylenically unsaturated monomer to form a pre-emulsion; 2) shearing the pre-emulsion to produce a mini-emulsion; and 3) polymerizing the miniemulsion in a polymerization zone to produce the aqueous dispersion.
Abstract:
The present invention relates to water-free and cosolvent-free binder compositions A) containing of a mixture of A1) at least one emulsifier-free, hydrophobic binder containing groups which can be polymerized by high-energy radiation and A2) at least one hydrophilic unsaturated polyester resin containing the reaction product of a) at least one unsaturated dicarboxylic acid and/or an anhydride thereof, b) at least one polyalkylene oxide compound having a number average molecular weight of 106 to 2000, at least 2 hydroxyl end groups and at least 2 oxyalkylene units, wherein at least 50% of the oxyalkylene units are oxyethylene units, and c) at least one hydroxy-functional compound containing at least one polymerizable unsaturated group per molecule selected from vinyl, allyl, methacrylic and acrylic groups. The present invention also relates to aqueous dispersions containing the binder compositions A), to a process for preparing an aqueous dispersion containing the binder dispersion, to a process for diluting the binder composition with tap water, to producing coatings from the aqueous dispersions and to the use of the binder compositions for preparing coating, adhesive or sealant compositions.
Abstract:
Hydrolytically stable polymer dispersions include ester linkages protected by hydrophobic alkyl groups which may be formed from polyester and alkyd polymer having ester linkages formed from secondary and/or tertiary hydroxy groups.
Abstract:
Core/shell alkyd dispersions including ester linkages of the core formed from secondary or tertiary hydroxy groups demonstrate improved hydrolytic stability while heat aged core/shell alkyd dispersions and core/shell alkyd dispersions reacted with trimellitic anhydride also exhibit reduction in dispersion viscosity.
Abstract:
A protective coating which is removable with a removing agent comprising a strong base, which protective coating comprises a pigment, a weak base and a binder, the binder being a polymer having a weight-average molecular weight of 10,000-100,000 and an acid value of 40-250. A protective agent and a method for forming the protective coating.